File size: 6,721 Bytes
4157dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
language: en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
metrics:
- precision
- recall
- f1
widget:
- text: Altitude measurements based on near - IR imaging in H and Hcont filters showed
that the deeper BS2 clouds were located near the methane condensation level (
≈1.2bars ) , while BS1 was generally ∼500 mb above that level ( at lower pressures
) .
- text: However , our model predicts different performance for large enough memory
- access latency and validates the intuition that the dynamic programming algorithm
performs better on these machines .
- text: We established a P fertilizer need map based on integrating results from the
two systems .
- text: Here , we have addressed this limitation for the endodermal lineage by developing
a defined culture system to expand and differentiate human foregut stem cells
( hFSCs ) derived from hPSCs . hFSCs can self - renew while maintaining their
capacity to differentiate into pancreatic and hepatic cells .
- text: The accumulated percentage gain from selection amounted to 51%/1 % lower Striga
infestation ( measured by area under Striga number progress curve , ASNPC ) ,
46%/62 % lower downy mildew incidence , and 49%/31 % higher panicle yield of the
C5 - FS compared to the mean of the genepool parents at Sadoré / Cinzana , respectively
.
pipeline_tag: token-classification
base_model: allenai/specter2_base
model-index:
- name: SpanMarker with allenai/specter2_base on my-data
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: my-data
type: unknown
split: test
metrics:
- type: f1
value: 0.6906354515050167
name: F1
- type: precision
value: 0.7108433734939759
name: Precision
- type: recall
value: 0.6715447154471544
name: Recall
---
# SpanMarker with allenai/specter2_base on my-data
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. This SpanMarker model uses [allenai/specter2_base](https://huggingface.co/allenai/specter2_base) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [allenai/specter2_base](https://huggingface.co/allenai/specter2_base)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
- **Language:** en
- **License:** cc-by-sa-4.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:---------|:--------------------------------------------------------------------------------------------------------|
| Data | "Depth time - series", "defect", "an overall mitochondrial" |
| Material | "cross - shore measurement locations", "the subject 's fibroblasts", "COXI , COXII and COXIII subunits" |
| Method | "an approximation", "EFSA", "in vitro" |
| Process | "intake", "a significant reduction of synthesis", "translation" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:---------|:----------|:-------|:-------|
| **all** | 0.7108 | 0.6715 | 0.6906 |
| Data | 0.6591 | 0.6138 | 0.6356 |
| Material | 0.795 | 0.7910 | 0.7930 |
| Method | 0.5 | 0.45 | 0.4737 |
| Process | 0.6898 | 0.6293 | 0.6582 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span-marker-allenai/specter2_base-me")
# Run inference
entities = model.predict("We established a P fertilizer need map based on integrating results from the two systems .")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span-marker-allenai/specter2_base-me")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span-marker-allenai/specter2_base-me-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 3 | 25.6049 | 106 |
| Entities per sentence | 0 | 5.2439 | 22 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.36.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |