zitongyang
commited on
Commit
•
7aab58b
1
Parent(s):
a0cf57e
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,79 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- llama
|
7 |
+
- entigraph
|
8 |
+
- synthetic-continued-pretraining
|
9 |
---
|
10 |
|
11 |
+
# EntiGraph CPT Model (based on Llama 3 8B)
|
12 |
|
13 |
+
## Model Description
|
14 |
|
15 |
+
The EntiGraph CPT model is a continuation of the Llama 3 8B base model, trained using the [Synthetic Continued Pretraining by Yang et al. (2024)](https://arxiv.org/pdf/2409.07431) approach with the EntiGraph algorithm. This model has been trained on a synthetic corpus generated from the QuALITY dataset to acquire domain-specific knowledge efficiently.
|
16 |
+
The code used to train the model is available at the [Synthetic Continued Pretraining GitHub repo](https://github.com/ZitongYang/Synthetic_Continued_Pretraining).
|
17 |
|
18 |
+
### Model Details
|
19 |
|
20 |
+
- **Developed by:** Zitong Yang, Neil Band, Shuangping Li, Emmanuel Candès, and Tatsunori Hashimoto
|
21 |
+
- **Model type:** Causal Language Model
|
22 |
+
- **Language(s):** English
|
23 |
+
- **License:** Apache 2.0
|
24 |
+
- **Finetuned from model:** Llama 3 8B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## Uses
|
27 |
|
28 |
+
### Intended Use
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
This model is intended for research purposes and applications requiring domain-specific knowledge related to the QuALITY dataset. It can be used for tasks such as closed-book question answering, summarization, and other NLP tasks within the domain of the training data.
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
### Out-of-Scope Use
|
33 |
|
34 |
+
This model should not be used for generating factual information outside the scope of its training data or for any malicious purposes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Training Details
|
37 |
|
38 |
### Training Data
|
39 |
|
40 |
+
The model was trained on a 455M token synthetic corpus generated by the EntiGraph algorithm from the QuALITY dataset.
|
|
|
|
|
41 |
|
42 |
### Training Procedure
|
43 |
|
44 |
+
- **Pretraining:** Continued pretraining on the EntiGraph synthetic corpus
|
45 |
+
- **Hyperparameters:**
|
46 |
+
- Learning rate: 5e-06
|
47 |
+
- Batch size: 16
|
48 |
+
- Weight decay: 0.01
|
49 |
+
- Warmup: 0.05
|
50 |
+
- Epochs: 2
|
51 |
+
- RedPajama replay rate: 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
## Evaluation
|
54 |
|
55 |
+
The model has been evaluated on the QuALITY question answering dataset, demonstrating improved performance in closed-book QA tasks compared to the base model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
## Limitations and Biases
|
58 |
|
59 |
+
While the EntiGraph CPT model shows improved performance on domain-specific tasks, it may inherit biases present in the original Llama 3 8B model and the QuALITY dataset. Users should be aware of potential limitations in generating content outside its training domain.
|
60 |
|
61 |
+
## Citation
|
62 |
|
63 |
+
If you use this model, please cite the original paper:
|
64 |
|
65 |
+
```
|
66 |
+
@misc{yang2024syntheticcontinuedpretraining,
|
67 |
+
title={Synthetic continued pretraining},
|
68 |
+
author={Zitong Yang and Neil Band and Shuangping Li and Emmanuel Candès and Tatsunori Hashimoto},
|
69 |
+
year={2024},
|
70 |
+
eprint={2409.07431},
|
71 |
+
archivePrefix={arXiv},
|
72 |
+
primaryClass={cs.LG},
|
73 |
+
url={https://arxiv.org/abs/2409.07431},
|
74 |
+
}
|
75 |
+
```
|
76 |
|
77 |
+
## Ethical Considerations
|
78 |
|
79 |
+
Users of this model should be aware of the ethical implications of using large language models and ensure responsible use in applications.
|