Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -151.39 +/- 34.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d338316c820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d338316c8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d338316c940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d338316c9d0>", "_build": "<function ActorCriticPolicy._build at 0x7d338316ca60>", "forward": "<function ActorCriticPolicy.forward at 0x7d338316caf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d338316cb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d338316cc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7d338316cca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d338316cd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d338316cdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d338316ce50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d3383168700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711994578889381964, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGPGnr5uxW0/YklBv8+3R7/lCNM7bY8rvAAAAAAAAAAAzaxhuw5gqz+GvJC9b465vqyfmLv2PQ+9AAAAAAAAAADGtmq+HTpsP13OVr6SAji/w1zTvRoJDD4AAAAAAAAAAJqYbj58H7Y/3x0EP+P3n75HWAQ+8Y21PAAAAAAAAAAAxu4FPqdmlD5OI5W+EViAv+tKnz5mng2+AAAAAAAAAAAaXBW/0/gZP3iw4L5VYjG/YwcEvyn2Q74AAAAAAAAAAEDMgj5v7Kc/OseWPgO5zb5c2QM+kWYWPQAAAAAAAAAAwF69vc+0uz/mjxa/oc+ZPSpZsbu22se9AAAAAAAAAAC+HYy+NDF9P5dXI79xizm/M4FGvrIPsb4AAAAAAAAAAJr2krwz7hA/MBsgPRmGRb+uLD2+6FwCPgAAAAAAAAAAGosJPc0mjj+lrK89Iggov2b+9bzDptU9AAAAAAAAAADmIeA9Q4ilPwfjyj6snN6+OzuBO4BHQT4AAAAAAAAAALp0Vz5G6k8/Pi4uPtDiIb9BE9U+9PYCvQAAAAAAAAAAZkZbPTundj8wCkQ+G0hGvxvbA749GlI9AAAAAAAAAACjJ5o+3zsaPxYSGD+QWGO/JFwOvZZvGT4AAAAAAAAAANoFTL49Bx8/wu/1vl4HUL9DXMU9CK3gPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFKkVXFLnLeMAWyUS0yMAXSUR0BWcfqPfbbldX2UKGgGR8BSWlDv3JxOaAdLTmgIR0BWc2A9V3lkdX2UKGgGR8BVwvKZDzAfaAdLb2gIR0BWdG0qpcX4dX2UKGgGR8BIXhX0XgtOaAdLimgIR0BWdroW56MSdX2UKGgGR8BKP64UeuFIaAdLjWgIR0BWfAyuZCv6dX2UKGgGR8BVGnOKO1fFaAdLXmgIR0BWfNA9mpVCdX2UKGgGR8BcZb3K0UoKaAdLeWgIR0BWfsj/uLJkdX2UKGgGR8BJ78EFGG21aAdLi2gIR0BWgVD4QBgedX2UKGgGR8BIuttIkJKKaAdLX2gIR0BWg3M6ij+KdX2UKGgGR8A5GYrrgOz6aAdLg2gIR0BWiIYvWYnfdX2UKGgGR8BP98e0Xxe+aAdLhWgIR0BWidQsPJ7tdX2UKGgGR8BQIKuSwGGEaAdLa2gIR0BWjE9pyp71dX2UKGgGR8BRsW1x82JjaAdLUGgIR0BWjuPq9oN/dX2UKGgGR8A4E/bCaZx8aAdLeGgIR0BWkOwTufEodX2UKGgGR8BP9j/MnqmkaAdLgGgIR0BWkkv4/NaAdX2UKGgGR8BB66bF0gbIaAdLZWgIR0BWlL1h9b5edX2UKGgGR8BGXTwlSjxkaAdLfWgIR0BWlod6sySFdX2UKGgGR8BTlHTuv2XcaAdLTmgIR0BWmMm8dxQ0dX2UKGgGR8BRmliSaEzwaAdLa2gIR0BWm1tKqXF+dX2UKGgGR8BgTKiXY150aAdLU2gIR0BWnTg/C66KdX2UKGgGR8BTxt7rs0HhaAdLe2gIR0BWnqWom5UcdX2UKGgGR8BGbNliBoVVaAdLaGgIR0BWpk5p8F6idX2UKGgGR8BBg9o371qWaAdLhWgIR0BWqaqjrRjSdX2UKGgGR8AkFs6aLGaQaAdLYmgIR0BWq4Qrc0tRdX2UKGgGR8A2LN8VpKzzaAdLlGgIR0BWsD6eoUBXdX2UKGgGR0AyuUFjd56daAdLTmgIR0BWtkrTYukDdX2UKGgGR8BSGUgKWszVaAdLZGgIR0BWt0tNBWxRdX2UKGgGRz/N+d9Ujs2OaAdLX2gIR0BWuC8FpwjudX2UKGgGR8BZBjkIX0oSaAdLfmgIR0BWunRw6ySndX2UKGgGR8BX8vDLr5ZbaAdLYWgIR0BWuuHFglWwdX2UKGgGR8BQRg40dilSaAdLe2gIR0BWvEpI+W4WdX2UKGgGR0Ai+QUYbbUPaAdLnGgIR0BWwOa4MF2WdX2UKGgGRz/7jYNAkcCHaAdLgmgIR0BWwOlsP8Q7dX2UKGgGR8Bgrw8r7O3VaAdLXWgIR0BWwdelbeMydX2UKGgGR8BarKVUuL75aAdLcmgIR0BWxdCu2Zy/dX2UKGgGR8BaTjfrKNhmaAdLYWgIR0BWyr9uP3i8dX2UKGgGR8AsbluFYdQwaAdLZmgIR0BW0MQNCqp+dX2UKGgGR8Axe4Fiay8jaAdLkGgIR0BW0WvOhTOxdX2UKGgGR8BOjkVeruIAaAdLRGgIR0BW0eHJtBOYdX2UKGgGR8BQmMEA5q/NaAdLYmgIR0BW1ERnOB1+dX2UKGgGR8BAOoN3GGVSaAdLbGgIR0BW3Cojv/ipdX2UKGgGR8BKodCmdiDvaAdLUmgIR0BW3S7Xg9/0dX2UKGgGR8BCYSiEg4ffaAdLX2gIR0BW3RJNCZ4OdX2UKGgGR8BRdxikO7QLaAdLjGgIR0BW3Q7LdN34dX2UKGgGR8BBwlu3trsTaAdLa2gIR0BW3Vm8M/hVdX2UKGgGR8BSuz850bLmaAdLcmgIR0BW3vJiiItUdX2UKGgGR8A9hLU1AJLNaAdLUWgIR0BW4Z0nw5NodX2UKGgGR8BKg+7UXpGGaAdLX2gIR0BW4kpmVZ9vdX2UKGgGR8BHHs4tHxz8aAdLdGgIR0BW4kt7KJVKdX2UKGgGR8BUG/iDM/yHaAdLamgIR0BW5OMqBmPHdX2UKGgGR8BCyIre67NCaAdLQWgIR0BW5/S2H+IedX2UKGgGR8BO/UwJw84haAdLWmgIR0BW7+q//NqydX2UKGgGR8BQ/kpI+W4WaAdLYmgIR0BW8hO1v2oOdX2UKGgGR8AnjhF3IMjNaAdLkGgIR0BW+7eEZiuudX2UKGgGR8BAar876pHaaAdLYGgIR0BW/RJmNBGAdX2UKGgGR8BWu5WmxdIHaAdLVmgIR0BW/0DMeOn3dX2UKGgGR8BaK7L+xW1daAdLbmgIR0BXAToUzsQedX2UKGgGR8Bhtx+UhV2iaAdLcmgIR0BXA6cRUWEcdX2UKGgGR8BSEFLSNOuaaAdLcmgIR0BXA3zYmLLqdX2UKGgGR0A2ccry1/lRaAdLc2gIR0BXBDSw4bS7dX2UKGgGR8BSI8/MW43FaAdLXmgIR0BXBShi9ZiedX2UKGgGR8BBNFHBk7OnaAdLk2gIR0BXBk1yeZogdX2UKGgGR8BTFB/Aj6eoaAdLbWgIR0BXBsL8aXKKdX2UKGgGR8BNlbI91U2laAdLbWgIR0BXB2VzIV/MdX2UKGgGR8BL52P91loUaAdLf2gIR0BXCbj1f3N+dX2UKGgGR8BKK/YzzmOmaAdLcGgIR0BXDf8hs67vdX2UKGgGR8BY5qmO2iL3aAdLYGgIR0BXErXQMQVcdX2UKGgGR8BVgy2c8TzvaAdLaGgIR0BXE1Cojv/jdX2UKGgGR8A+e4Glhw2maAdLWWgIR0BXGlwLmZE2dX2UKGgGR8BNlzw+dK/VaAdLUGgIR0BXGqWw/xDtdX2UKGgGR8BgmrnoxHoYaAdLSWgIR0BXHIiC8OCodX2UKGgGR8Bhbr8R+SbIaAdLYGgIR0BXHh1DBuXNdX2UKGgGR0A/UjTKDCgsaAdN6ANoCEdAVx7k+5e7c3V9lChoBkfARd5OzposZ2gHS1RoCEdAVx/huO0b+HV9lChoBkfANsKVQhwEQ2gHS0poCEdAVyA1XNke63V9lChoBkfASbqTOgQHzGgHS1ZoCEdAVyJBiTdLx3V9lChoBkfAIYUornTy8WgHS09oCEdAVyM6mwaBJHV9lChoBkfAXeGiFj/dZmgHS3doCEdAVybjPv8ZUHV9lChoBkfARG+za9K28mgHS3BoCEdAVydF4LThHnV9lChoBkfASh0QXhwVCWgHS01oCEdAVypceKbay3V9lChoBkfAVl3g5zYEn2gHS2NoCEdAVywaESM983V9lChoBkfARDY7A+IM0GgHS3xoCEdAVyyZAprk83V9lChoBkfAUDWr7wazeGgHS1toCEdAVy3A9FF2FHV9lChoBkfAVxMl/pdKNGgHS4poCEdAVy8G6f8Mu3V9lChoBkfATP4jlgc94mgHS1VoCEdAVzF9lVcUunV9lChoBkfARgPEjxCpm2gHS0loCEdAVzGlP8AJcHV9lChoBkfAT55rFfiPyWgHS09oCEdAVzRx0dRzinV9lChoBkfAUuPcL0BfbGgHS2ZoCEdAVzYW2w3YMHV9lChoBkfAQHcGLUCq62gHS2poCEdAVznWsijcmHV9lChoBkfAReCLwWnCO2gHS19oCEdAVzsqoZQ53nV9lChoBkfAQOkURFqi5GgHS19oCEdAVzwwco6S1XV9lChoBkfAO4QCOmzjWGgHS1hoCEdAVz5QP7N0NnV9lChoBkfAbgEbrC3w1GgHS4JoCEdAVz9EH+qBE3V9lChoBkfASmyGL1mJ32gHS0NoCEdAVz9zq8lHBnV9lChoBkfATDpmI0qH5GgHS01oCEdAV0DcIqsls3V9lChoBkfAQY1Vmz0HyGgHS2NoCEdAV0GHsTnJT3V9lChoBkfAYRBy/bj942gHS15oCEdAV0MMrmQr+nV9lChoBkfAQr05U96kZmgHS4poCEdAV0PGhmGucXV9lChoBkfAVT8u9OARTWgHS09oCEdAV0ZhjOLR8nV9lChoBkfAUcW9kBjnWGgHS2FoCEdAV0g8xKxs23VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:605371ed6c6f0ac61600f45a3953dccf4251a282ed17199e85772c444478bc82
|
3 |
+
size 147951
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d338316c820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d338316c8b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d338316c940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d338316c9d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d338316ca60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d338316caf0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d338316cb80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d338316cc10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d338316cca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d338316cd30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d338316cdc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d338316ce50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d3383168700>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 114688,
|
25 |
+
"_total_timesteps": 100000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1711994578889381964,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGPGnr5uxW0/YklBv8+3R7/lCNM7bY8rvAAAAAAAAAAAzaxhuw5gqz+GvJC9b465vqyfmLv2PQ+9AAAAAAAAAADGtmq+HTpsP13OVr6SAji/w1zTvRoJDD4AAAAAAAAAAJqYbj58H7Y/3x0EP+P3n75HWAQ+8Y21PAAAAAAAAAAAxu4FPqdmlD5OI5W+EViAv+tKnz5mng2+AAAAAAAAAAAaXBW/0/gZP3iw4L5VYjG/YwcEvyn2Q74AAAAAAAAAAEDMgj5v7Kc/OseWPgO5zb5c2QM+kWYWPQAAAAAAAAAAwF69vc+0uz/mjxa/oc+ZPSpZsbu22se9AAAAAAAAAAC+HYy+NDF9P5dXI79xizm/M4FGvrIPsb4AAAAAAAAAAJr2krwz7hA/MBsgPRmGRb+uLD2+6FwCPgAAAAAAAAAAGosJPc0mjj+lrK89Iggov2b+9bzDptU9AAAAAAAAAADmIeA9Q4ilPwfjyj6snN6+OzuBO4BHQT4AAAAAAAAAALp0Vz5G6k8/Pi4uPtDiIb9BE9U+9PYCvQAAAAAAAAAAZkZbPTundj8wCkQ+G0hGvxvbA749GlI9AAAAAAAAAACjJ5o+3zsaPxYSGD+QWGO/JFwOvZZvGT4AAAAAAAAAANoFTL49Bx8/wu/1vl4HUL9DXMU9CK3gPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.1468799999999999,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFKkVXFLnLeMAWyUS0yMAXSUR0BWcfqPfbbldX2UKGgGR8BSWlDv3JxOaAdLTmgIR0BWc2A9V3lkdX2UKGgGR8BVwvKZDzAfaAdLb2gIR0BWdG0qpcX4dX2UKGgGR8BIXhX0XgtOaAdLimgIR0BWdroW56MSdX2UKGgGR8BKP64UeuFIaAdLjWgIR0BWfAyuZCv6dX2UKGgGR8BVGnOKO1fFaAdLXmgIR0BWfNA9mpVCdX2UKGgGR8BcZb3K0UoKaAdLeWgIR0BWfsj/uLJkdX2UKGgGR8BJ78EFGG21aAdLi2gIR0BWgVD4QBgedX2UKGgGR8BIuttIkJKKaAdLX2gIR0BWg3M6ij+KdX2UKGgGR8A5GYrrgOz6aAdLg2gIR0BWiIYvWYnfdX2UKGgGR8BP98e0Xxe+aAdLhWgIR0BWidQsPJ7tdX2UKGgGR8BQIKuSwGGEaAdLa2gIR0BWjE9pyp71dX2UKGgGR8BRsW1x82JjaAdLUGgIR0BWjuPq9oN/dX2UKGgGR8A4E/bCaZx8aAdLeGgIR0BWkOwTufEodX2UKGgGR8BP9j/MnqmkaAdLgGgIR0BWkkv4/NaAdX2UKGgGR8BB66bF0gbIaAdLZWgIR0BWlL1h9b5edX2UKGgGR8BGXTwlSjxkaAdLfWgIR0BWlod6sySFdX2UKGgGR8BTlHTuv2XcaAdLTmgIR0BWmMm8dxQ0dX2UKGgGR8BRmliSaEzwaAdLa2gIR0BWm1tKqXF+dX2UKGgGR8BgTKiXY150aAdLU2gIR0BWnTg/C66KdX2UKGgGR8BTxt7rs0HhaAdLe2gIR0BWnqWom5UcdX2UKGgGR8BGbNliBoVVaAdLaGgIR0BWpk5p8F6idX2UKGgGR8BBg9o371qWaAdLhWgIR0BWqaqjrRjSdX2UKGgGR8AkFs6aLGaQaAdLYmgIR0BWq4Qrc0tRdX2UKGgGR8A2LN8VpKzzaAdLlGgIR0BWsD6eoUBXdX2UKGgGR0AyuUFjd56daAdLTmgIR0BWtkrTYukDdX2UKGgGR8BSGUgKWszVaAdLZGgIR0BWt0tNBWxRdX2UKGgGRz/N+d9Ujs2OaAdLX2gIR0BWuC8FpwjudX2UKGgGR8BZBjkIX0oSaAdLfmgIR0BWunRw6ySndX2UKGgGR8BX8vDLr5ZbaAdLYWgIR0BWuuHFglWwdX2UKGgGR8BQRg40dilSaAdLe2gIR0BWvEpI+W4WdX2UKGgGR0Ai+QUYbbUPaAdLnGgIR0BWwOa4MF2WdX2UKGgGRz/7jYNAkcCHaAdLgmgIR0BWwOlsP8Q7dX2UKGgGR8Bgrw8r7O3VaAdLXWgIR0BWwdelbeMydX2UKGgGR8BarKVUuL75aAdLcmgIR0BWxdCu2Zy/dX2UKGgGR8BaTjfrKNhmaAdLYWgIR0BWyr9uP3i8dX2UKGgGR8AsbluFYdQwaAdLZmgIR0BW0MQNCqp+dX2UKGgGR8Axe4Fiay8jaAdLkGgIR0BW0WvOhTOxdX2UKGgGR8BOjkVeruIAaAdLRGgIR0BW0eHJtBOYdX2UKGgGR8BQmMEA5q/NaAdLYmgIR0BW1ERnOB1+dX2UKGgGR8BAOoN3GGVSaAdLbGgIR0BW3Cojv/ipdX2UKGgGR8BKodCmdiDvaAdLUmgIR0BW3S7Xg9/0dX2UKGgGR8BCYSiEg4ffaAdLX2gIR0BW3RJNCZ4OdX2UKGgGR8BRdxikO7QLaAdLjGgIR0BW3Q7LdN34dX2UKGgGR8BBwlu3trsTaAdLa2gIR0BW3Vm8M/hVdX2UKGgGR8BSuz850bLmaAdLcmgIR0BW3vJiiItUdX2UKGgGR8A9hLU1AJLNaAdLUWgIR0BW4Z0nw5NodX2UKGgGR8BKg+7UXpGGaAdLX2gIR0BW4kpmVZ9vdX2UKGgGR8BHHs4tHxz8aAdLdGgIR0BW4kt7KJVKdX2UKGgGR8BUG/iDM/yHaAdLamgIR0BW5OMqBmPHdX2UKGgGR8BCyIre67NCaAdLQWgIR0BW5/S2H+IedX2UKGgGR8BO/UwJw84haAdLWmgIR0BW7+q//NqydX2UKGgGR8BQ/kpI+W4WaAdLYmgIR0BW8hO1v2oOdX2UKGgGR8AnjhF3IMjNaAdLkGgIR0BW+7eEZiuudX2UKGgGR8BAar876pHaaAdLYGgIR0BW/RJmNBGAdX2UKGgGR8BWu5WmxdIHaAdLVmgIR0BW/0DMeOn3dX2UKGgGR8BaK7L+xW1daAdLbmgIR0BXAToUzsQedX2UKGgGR8Bhtx+UhV2iaAdLcmgIR0BXA6cRUWEcdX2UKGgGR8BSEFLSNOuaaAdLcmgIR0BXA3zYmLLqdX2UKGgGR0A2ccry1/lRaAdLc2gIR0BXBDSw4bS7dX2UKGgGR8BSI8/MW43FaAdLXmgIR0BXBShi9ZiedX2UKGgGR8BBNFHBk7OnaAdLk2gIR0BXBk1yeZogdX2UKGgGR8BTFB/Aj6eoaAdLbWgIR0BXBsL8aXKKdX2UKGgGR8BNlbI91U2laAdLbWgIR0BXB2VzIV/MdX2UKGgGR8BL52P91loUaAdLf2gIR0BXCbj1f3N+dX2UKGgGR8BKK/YzzmOmaAdLcGgIR0BXDf8hs67vdX2UKGgGR8BY5qmO2iL3aAdLYGgIR0BXErXQMQVcdX2UKGgGR8BVgy2c8TzvaAdLaGgIR0BXE1Cojv/jdX2UKGgGR8A+e4Glhw2maAdLWWgIR0BXGlwLmZE2dX2UKGgGR8BNlzw+dK/VaAdLUGgIR0BXGqWw/xDtdX2UKGgGR8BgmrnoxHoYaAdLSWgIR0BXHIiC8OCodX2UKGgGR8Bhbr8R+SbIaAdLYGgIR0BXHh1DBuXNdX2UKGgGR0A/UjTKDCgsaAdN6ANoCEdAVx7k+5e7c3V9lChoBkfARd5OzposZ2gHS1RoCEdAVx/huO0b+HV9lChoBkfANsKVQhwEQ2gHS0poCEdAVyA1XNke63V9lChoBkfASbqTOgQHzGgHS1ZoCEdAVyJBiTdLx3V9lChoBkfAIYUornTy8WgHS09oCEdAVyM6mwaBJHV9lChoBkfAXeGiFj/dZmgHS3doCEdAVybjPv8ZUHV9lChoBkfARG+za9K28mgHS3BoCEdAVydF4LThHnV9lChoBkfASh0QXhwVCWgHS01oCEdAVypceKbay3V9lChoBkfAVl3g5zYEn2gHS2NoCEdAVywaESM983V9lChoBkfARDY7A+IM0GgHS3xoCEdAVyyZAprk83V9lChoBkfAUDWr7wazeGgHS1toCEdAVy3A9FF2FHV9lChoBkfAVxMl/pdKNGgHS4poCEdAVy8G6f8Mu3V9lChoBkfATP4jlgc94mgHS1VoCEdAVzF9lVcUunV9lChoBkfARgPEjxCpm2gHS0loCEdAVzGlP8AJcHV9lChoBkfAT55rFfiPyWgHS09oCEdAVzRx0dRzinV9lChoBkfAUuPcL0BfbGgHS2ZoCEdAVzYW2w3YMHV9lChoBkfAQHcGLUCq62gHS2poCEdAVznWsijcmHV9lChoBkfAReCLwWnCO2gHS19oCEdAVzsqoZQ53nV9lChoBkfAQOkURFqi5GgHS19oCEdAVzwwco6S1XV9lChoBkfAO4QCOmzjWGgHS1hoCEdAVz5QP7N0NnV9lChoBkfAbgEbrC3w1GgHS4JoCEdAVz9EH+qBE3V9lChoBkfASmyGL1mJ32gHS0NoCEdAVz9zq8lHBnV9lChoBkfATDpmI0qH5GgHS01oCEdAV0DcIqsls3V9lChoBkfAQY1Vmz0HyGgHS2NoCEdAV0GHsTnJT3V9lChoBkfAYRBy/bj942gHS15oCEdAV0MMrmQr+nV9lChoBkfAQr05U96kZmgHS4poCEdAV0PGhmGucXV9lChoBkfAVT8u9OARTWgHS09oCEdAV0ZhjOLR8nV9lChoBkfAUcW9kBjnWGgHS2FoCEdAV0g8xKxs23VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 28,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37c647453f74fb472d87d68d21b31b4369d422fb9619deb5910df7779c84ff84
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:615681bc602e3039a29026abc4acd018ed53672fee11935241c5f8aef9714d7e
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (203 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -151.39282277160237, "std_reward": 34.96793288273029, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-01T18:15:36.544443"}
|