--- license: apache-2.0 base_model: facebook/convnextv2-base-22k-384 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 results: [] --- # 10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3586 - Accuracy: 0.9180 - Precision: 0.9196 - Recall: 0.9160 - F1: 0.9168 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 27 - eval_batch_size: 27 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 108 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.0397 | 1.0 | 4064 | 1.4192 | 0.6356 | 0.6956 | 0.6130 | 0.6167 | | 1.3997 | 2.0 | 8129 | 0.9638 | 0.7454 | 0.7708 | 0.7320 | 0.7325 | | 1.1393 | 3.0 | 12193 | 0.7564 | 0.7973 | 0.8102 | 0.7883 | 0.7884 | | 0.9942 | 4.0 | 16258 | 0.6256 | 0.8331 | 0.8464 | 0.8276 | 0.8294 | | 0.8572 | 5.0 | 20322 | 0.5610 | 0.8507 | 0.8632 | 0.8441 | 0.8467 | | 0.6445 | 6.0 | 24387 | 0.4866 | 0.8730 | 0.8802 | 0.8688 | 0.8697 | | 0.5444 | 7.0 | 28451 | 0.4496 | 0.8852 | 0.8909 | 0.8812 | 0.8829 | | 0.4955 | 8.0 | 32516 | 0.4241 | 0.8986 | 0.9039 | 0.8952 | 0.8974 | | 0.448 | 9.0 | 36580 | 0.3875 | 0.9104 | 0.9133 | 0.9078 | 0.9091 | | 0.4109 | 10.0 | 40640 | 0.3586 | 0.9180 | 0.9196 | 0.9160 | 0.9168 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3