--- license: apache-2.0 base_model: facebook/convnextv2-tiny-22k-384 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-finetuned-spiderTraining20-500 results: [] --- # 10-finetuned-spiderTraining20-500 This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2251 - Accuracy: 0.9439 - Precision: 0.9422 - Recall: 0.9425 - F1: 0.9420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9969 | 1.0 | 125 | 0.7141 | 0.7758 | 0.7913 | 0.7716 | 0.7652 | | 0.7535 | 2.0 | 250 | 0.6724 | 0.8038 | 0.8426 | 0.8040 | 0.8019 | | 0.6749 | 3.0 | 375 | 0.4999 | 0.8428 | 0.8615 | 0.8378 | 0.8410 | | 0.4791 | 4.0 | 500 | 0.4593 | 0.8599 | 0.8766 | 0.8529 | 0.8562 | | 0.4112 | 5.0 | 625 | 0.3726 | 0.8899 | 0.8925 | 0.8852 | 0.8852 | | 0.3416 | 6.0 | 750 | 0.2770 | 0.9169 | 0.9137 | 0.9161 | 0.9133 | | 0.3195 | 7.0 | 875 | 0.3013 | 0.9139 | 0.9163 | 0.9069 | 0.9096 | | 0.1927 | 8.0 | 1000 | 0.2297 | 0.9369 | 0.9364 | 0.9344 | 0.9348 | | 0.1596 | 9.0 | 1125 | 0.2510 | 0.9329 | 0.9344 | 0.9326 | 0.9324 | | 0.1907 | 10.0 | 1250 | 0.2251 | 0.9439 | 0.9422 | 0.9425 | 0.9420 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3