--- license: apache-2.0 base_model: facebook/convnextv2-tiny-22k-384 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-finetuned-spiderTraining50-200 results: [] --- # 10-finetuned-spiderTraining50-200 This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3858 - Accuracy: 0.8899 - Precision: 0.8906 - Recall: 0.8904 - F1: 0.8882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.6006 | 1.0 | 125 | 1.3292 | 0.6246 | 0.6998 | 0.6230 | 0.6169 | | 1.3122 | 2.0 | 250 | 1.0785 | 0.6747 | 0.7123 | 0.6769 | 0.6664 | | 0.8869 | 3.0 | 375 | 0.9295 | 0.7367 | 0.7838 | 0.7398 | 0.7424 | | 0.7394 | 4.0 | 500 | 0.6719 | 0.8078 | 0.8157 | 0.8089 | 0.8041 | | 0.5704 | 5.0 | 625 | 0.6200 | 0.8198 | 0.8320 | 0.8265 | 0.8176 | | 0.4273 | 6.0 | 750 | 0.5874 | 0.8338 | 0.8469 | 0.8338 | 0.8310 | | 0.3289 | 7.0 | 875 | 0.5009 | 0.8549 | 0.8618 | 0.8523 | 0.8519 | | 0.2828 | 8.0 | 1000 | 0.4697 | 0.8699 | 0.8728 | 0.8696 | 0.8677 | | 0.2991 | 9.0 | 1125 | 0.4464 | 0.8639 | 0.8651 | 0.8653 | 0.8609 | | 0.2108 | 10.0 | 1250 | 0.3858 | 0.8899 | 0.8906 | 0.8904 | 0.8882 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3