Model save
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-tiny-22k-384
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: 20-finetuned-spiderTraining50-200
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 20-finetuned-spiderTraining50-200
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.4409
|
24 |
+
- Accuracy: 0.8909
|
25 |
+
- Precision: 0.8899
|
26 |
+
- Recall: 0.8922
|
27 |
+
- F1: 0.8881
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0005
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 64
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 20
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
+
| 1.4597 | 1.0 | 125 | 1.1828 | 0.6617 | 0.7065 | 0.6632 | 0.6495 |
|
63 |
+
| 1.2938 | 2.0 | 250 | 1.0667 | 0.6827 | 0.7244 | 0.6845 | 0.6701 |
|
64 |
+
| 1.1316 | 3.0 | 375 | 0.9465 | 0.7257 | 0.7828 | 0.7291 | 0.7280 |
|
65 |
+
| 0.7827 | 4.0 | 500 | 0.8576 | 0.7397 | 0.7701 | 0.7394 | 0.7372 |
|
66 |
+
| 0.7407 | 5.0 | 625 | 0.8084 | 0.7728 | 0.7876 | 0.7728 | 0.7636 |
|
67 |
+
| 0.6481 | 6.0 | 750 | 0.7537 | 0.7798 | 0.7999 | 0.7783 | 0.7765 |
|
68 |
+
| 0.5868 | 7.0 | 875 | 0.6406 | 0.8258 | 0.8341 | 0.8266 | 0.8224 |
|
69 |
+
| 0.4461 | 8.0 | 1000 | 0.7555 | 0.7768 | 0.7953 | 0.7736 | 0.7679 |
|
70 |
+
| 0.4984 | 9.0 | 1125 | 0.6601 | 0.8128 | 0.8260 | 0.8120 | 0.8059 |
|
71 |
+
| 0.3898 | 10.0 | 1250 | 0.7017 | 0.8108 | 0.8296 | 0.8079 | 0.8059 |
|
72 |
+
| 0.3262 | 11.0 | 1375 | 0.6199 | 0.8258 | 0.8341 | 0.8268 | 0.8212 |
|
73 |
+
| 0.3243 | 12.0 | 1500 | 0.6561 | 0.8188 | 0.8316 | 0.8256 | 0.8191 |
|
74 |
+
| 0.2914 | 13.0 | 1625 | 0.6037 | 0.8368 | 0.8504 | 0.8429 | 0.8351 |
|
75 |
+
| 0.2627 | 14.0 | 1750 | 0.5609 | 0.8529 | 0.8588 | 0.8557 | 0.8501 |
|
76 |
+
| 0.2457 | 15.0 | 1875 | 0.5266 | 0.8639 | 0.8674 | 0.8666 | 0.8613 |
|
77 |
+
| 0.2294 | 16.0 | 2000 | 0.5475 | 0.8589 | 0.8658 | 0.8608 | 0.8560 |
|
78 |
+
| 0.2088 | 17.0 | 2125 | 0.4929 | 0.8699 | 0.8726 | 0.8678 | 0.8672 |
|
79 |
+
| 0.2101 | 18.0 | 2250 | 0.4488 | 0.8799 | 0.8782 | 0.8775 | 0.8752 |
|
80 |
+
| 0.1767 | 19.0 | 2375 | 0.4543 | 0.8829 | 0.8824 | 0.8808 | 0.8782 |
|
81 |
+
| 0.1445 | 20.0 | 2500 | 0.4409 | 0.8909 | 0.8899 | 0.8922 | 0.8881 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.33.3
|
87 |
+
- Pytorch 2.0.1+cu117
|
88 |
+
- Datasets 2.14.5
|
89 |
+
- Tokenizers 0.13.3
|