zkdeng commited on
Commit
9b5aa98
1 Parent(s): 751b2e6

Model save

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-tiny-22k-384
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: convnextv2-tiny-22k-384-0.0005-finetuned-spiderTraining20-500
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # convnextv2-tiny-22k-384-0.0005-finetuned-spiderTraining20-500
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-tiny-22k-384](https://huggingface.co/facebook/convnextv2-tiny-22k-384) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1840
24
+ - Accuracy: 0.9439
25
+ - Precision: 0.9448
26
+ - Recall: 0.9411
27
+ - F1: 0.9424
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0005
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - distributed_type: multi-GPU
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 64
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 5
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
62
+ | 0.934 | 1.0 | 125 | 0.6076 | 0.8118 | 0.8237 | 0.8060 | 0.8064 |
63
+ | 0.5826 | 2.0 | 250 | 0.4684 | 0.8529 | 0.8685 | 0.8506 | 0.8436 |
64
+ | 0.4743 | 3.0 | 375 | 0.3240 | 0.9059 | 0.9083 | 0.9006 | 0.9023 |
65
+ | 0.3488 | 4.0 | 500 | 0.2431 | 0.9369 | 0.9345 | 0.9348 | 0.9335 |
66
+ | 0.2307 | 5.0 | 625 | 0.1840 | 0.9439 | 0.9448 | 0.9411 | 0.9424 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.33.3
72
+ - Pytorch 2.0.1+cu117
73
+ - Datasets 2.14.5
74
+ - Tokenizers 0.13.3