Upload 13 files
Browse files- .gitattributes +1 -0
- config.json +47 -0
- configuration.json +1 -0
- configuration_llama.py +206 -0
- generation_config.json +12 -0
- latest +1 -0
- model.safetensors +3 -0
- modeling_llama.py +1857 -0
- special_tokens_map.json +23 -0
- tokenization_llama.py +410 -0
- tokenization_llama_fast.py +255 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2063 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "HTML-Pruner-Llama-3.2-1B",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_llama.LlamaConfig",
|
8 |
+
"AutoModel": "modeling_llama.LlamaForCausalLM",
|
9 |
+
"AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM",
|
10 |
+
"AutoModelForSeq2SeqLM": "modeling_llama.LlamaForHTMLTreeGeneration"
|
11 |
+
},
|
12 |
+
"attention_bias": false,
|
13 |
+
"attention_dropout": 0.0,
|
14 |
+
"bos_token_id": 128000,
|
15 |
+
"eos_token_id": [
|
16 |
+
128001,
|
17 |
+
128008,
|
18 |
+
128009
|
19 |
+
],
|
20 |
+
"head_dim": 64,
|
21 |
+
"hidden_act": "silu",
|
22 |
+
"hidden_size": 2048,
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 8192,
|
25 |
+
"max_position_embeddings": 131072,
|
26 |
+
"mlp_bias": false,
|
27 |
+
"model_type": "llama",
|
28 |
+
"num_attention_heads": 32,
|
29 |
+
"num_hidden_layers": 16,
|
30 |
+
"num_key_value_heads": 8,
|
31 |
+
"pretraining_tp": 1,
|
32 |
+
"rms_norm_eps": 1e-05,
|
33 |
+
"rope_scaling": {
|
34 |
+
"factor": 32.0,
|
35 |
+
"high_freq_factor": 4.0,
|
36 |
+
"low_freq_factor": 1.0,
|
37 |
+
"original_max_position_embeddings": 8192,
|
38 |
+
"rope_type": "llama3"
|
39 |
+
},
|
40 |
+
"rope_theta": 500000.0,
|
41 |
+
"tie_word_embeddings": true,
|
42 |
+
"torch_dtype": "bfloat16",
|
43 |
+
"transformers_version": "4.45.0.dev0",
|
44 |
+
"use_cache": true,
|
45 |
+
"vocab_size": 128256,
|
46 |
+
"attn_implementation": "flash_attention_2"
|
47 |
+
}
|
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
configuration_llama.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""LLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
24 |
+
|
25 |
+
|
26 |
+
class LlamaConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
29 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
30 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
38 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
41 |
+
Dimension of the hidden representations.
|
42 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
43 |
+
Dimension of the MLP representations.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
+
Number of hidden layers in the Transformer decoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
47 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
48 |
+
num_key_value_heads (`int`, *optional*):
|
49 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
50 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
51 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
52 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
53 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
54 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
55 |
+
`num_attention_heads`.
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
57 |
+
The non-linear activation function (function or string) in the decoder.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
59 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
60 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
64 |
+
The epsilon used by the rms normalization layers.
|
65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
67 |
+
relevant if `config.is_decoder=True`.
|
68 |
+
pad_token_id (`int`, *optional*):
|
69 |
+
Padding token id.
|
70 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
71 |
+
Beginning of stream token id.
|
72 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
73 |
+
End of stream token id.
|
74 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
75 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
76 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
77 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
78 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether to tie weight embeddings
|
81 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
82 |
+
The base period of the RoPE embeddings.
|
83 |
+
rope_scaling (`Dict`, *optional*):
|
84 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
85 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
86 |
+
accordingly.
|
87 |
+
Expected contents:
|
88 |
+
`rope_type` (`str`):
|
89 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
90 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
91 |
+
`factor` (`float`, *optional*):
|
92 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
93 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
94 |
+
original maximum pre-trained length.
|
95 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
96 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
97 |
+
pretraining.
|
98 |
+
`attention_factor` (`float`, *optional*):
|
99 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
100 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
101 |
+
`factor` field to infer the suggested value.
|
102 |
+
`beta_fast` (`float`, *optional*):
|
103 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
104 |
+
ramp function. If unspecified, it defaults to 32.
|
105 |
+
`beta_slow` (`float`, *optional*):
|
106 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
107 |
+
ramp function. If unspecified, it defaults to 1.
|
108 |
+
`short_factor` (`List[float]`, *optional*):
|
109 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
110 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
111 |
+
size divided by the number of attention heads divided by 2
|
112 |
+
`long_factor` (`List[float]`, *optional*):
|
113 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
114 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
115 |
+
size divided by the number of attention heads divided by 2
|
116 |
+
`low_freq_factor` (`float`, *optional*):
|
117 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
118 |
+
`high_freq_factor` (`float`, *optional*):
|
119 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
120 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
121 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
122 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
123 |
+
The dropout ratio for the attention probabilities.
|
124 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
125 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
126 |
+
head_dim (`int`, *optional*):
|
127 |
+
The attention head dimension. If None, it will default to hidden_size // num_heads
|
128 |
+
|
129 |
+
```python
|
130 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
131 |
+
|
132 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
133 |
+
>>> configuration = LlamaConfig()
|
134 |
+
|
135 |
+
>>> # Initializing a model from the llama-7b style configuration
|
136 |
+
>>> model = LlamaModel(configuration)
|
137 |
+
|
138 |
+
>>> # Accessing the model configuration
|
139 |
+
>>> configuration = model.config
|
140 |
+
```"""
|
141 |
+
|
142 |
+
model_type = "llama"
|
143 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
vocab_size=32000,
|
148 |
+
hidden_size=4096,
|
149 |
+
intermediate_size=11008,
|
150 |
+
num_hidden_layers=32,
|
151 |
+
num_attention_heads=32,
|
152 |
+
num_key_value_heads=None,
|
153 |
+
hidden_act="silu",
|
154 |
+
max_position_embeddings=2048,
|
155 |
+
initializer_range=0.02,
|
156 |
+
rms_norm_eps=1e-6,
|
157 |
+
use_cache=True,
|
158 |
+
pad_token_id=128001,
|
159 |
+
bos_token_id=1,
|
160 |
+
eos_token_id=2,
|
161 |
+
pretraining_tp=1,
|
162 |
+
tie_word_embeddings=False,
|
163 |
+
rope_theta=10000.0,
|
164 |
+
rope_scaling=None,
|
165 |
+
attention_bias=False,
|
166 |
+
attention_dropout=0.0,
|
167 |
+
mlp_bias=False,
|
168 |
+
head_dim=None,
|
169 |
+
**kwargs,
|
170 |
+
):
|
171 |
+
self.vocab_size = vocab_size
|
172 |
+
self.max_position_embeddings = max_position_embeddings
|
173 |
+
self.hidden_size = hidden_size
|
174 |
+
self.intermediate_size = intermediate_size
|
175 |
+
self.num_hidden_layers = num_hidden_layers
|
176 |
+
self.num_attention_heads = num_attention_heads
|
177 |
+
|
178 |
+
# for backward compatibility
|
179 |
+
if num_key_value_heads is None:
|
180 |
+
num_key_value_heads = num_attention_heads
|
181 |
+
|
182 |
+
self.num_key_value_heads = num_key_value_heads
|
183 |
+
self.hidden_act = hidden_act
|
184 |
+
self.initializer_range = initializer_range
|
185 |
+
self.rms_norm_eps = rms_norm_eps
|
186 |
+
self.pretraining_tp = pretraining_tp
|
187 |
+
self.use_cache = use_cache
|
188 |
+
self.rope_theta = rope_theta
|
189 |
+
self.rope_scaling = rope_scaling
|
190 |
+
self.attention_bias = attention_bias
|
191 |
+
self.attention_dropout = attention_dropout
|
192 |
+
self.mlp_bias = mlp_bias
|
193 |
+
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
|
194 |
+
# Validate the correctness of rotary position embeddings parameters
|
195 |
+
# BC: if there is a 'type' field, copy it it to 'rope_type'.
|
196 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
197 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
198 |
+
rope_config_validation(self)
|
199 |
+
|
200 |
+
super().__init__(
|
201 |
+
pad_token_id=pad_token_id,
|
202 |
+
bos_token_id=bos_token_id,
|
203 |
+
eos_token_id=eos_token_id,
|
204 |
+
tie_word_embeddings=tie_word_embeddings,
|
205 |
+
**kwargs,
|
206 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 128000,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
128001,
|
6 |
+
128008,
|
7 |
+
128009
|
8 |
+
],
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_p": 0.9,
|
11 |
+
"transformers_version": "4.45.0.dev0"
|
12 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step381
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef427eecfe24558d8908112b54ed9ac1d1ce6f908ca1778e481c64caa9cdada7
|
3 |
+
size 2471645608
|
modeling_llama.py
ADDED
@@ -0,0 +1,1857 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
import bs4
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
33 |
+
from transformers.generation import GenerationMixin
|
34 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
35 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
36 |
+
from transformers.modeling_outputs import (
|
37 |
+
BaseModelOutputWithPast,
|
38 |
+
CausalLMOutputWithPast,
|
39 |
+
QuestionAnsweringModelOutput,
|
40 |
+
SequenceClassifierOutputWithPast,
|
41 |
+
TokenClassifierOutput,
|
42 |
+
)
|
43 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
44 |
+
from transformers.modeling_utils import PreTrainedModel
|
45 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
46 |
+
from transformers.utils import (
|
47 |
+
add_start_docstrings,
|
48 |
+
add_start_docstrings_to_model_forward,
|
49 |
+
is_flash_attn_greater_or_equal_2_10,
|
50 |
+
logging,
|
51 |
+
replace_return_docstrings,
|
52 |
+
)
|
53 |
+
from .configuration_llama import LlamaConfig
|
54 |
+
from collections import defaultdict
|
55 |
+
from typing import List, Tuple
|
56 |
+
|
57 |
+
import numpy as np
|
58 |
+
from anytree import Node, RenderTree
|
59 |
+
import bs4
|
60 |
+
from anytree import PreOrderIter
|
61 |
+
from anytree.exporter import DotExporter
|
62 |
+
|
63 |
+
|
64 |
+
def nodenamefunc(node):
|
65 |
+
return f"{node.name}|{node.prob}|{node.input_ids}"
|
66 |
+
|
67 |
+
|
68 |
+
class TokenDotExporter(DotExporter):
|
69 |
+
def __init__(self, node, **kwargs):
|
70 |
+
super().__init__(node, **kwargs)
|
71 |
+
|
72 |
+
def __iter__(self):
|
73 |
+
# prepare
|
74 |
+
indent = " " * self.indent
|
75 |
+
nodenamefunc = self.nodenamefunc or self._default_nodenamefunc
|
76 |
+
nodeattrfunc = self.nodeattrfunc or self._default_nodeattrfunc
|
77 |
+
edgeattrfunc = self.edgeattrfunc or self._default_edgeattrfunc
|
78 |
+
edgetypefunc = self.edgetypefunc or self._default_edgetypefunc
|
79 |
+
filter_ = self.filter_ or self._default_filter
|
80 |
+
return self.__iter(indent, nodenamefunc, nodeattrfunc, edgeattrfunc, edgetypefunc, filter_)
|
81 |
+
|
82 |
+
def __iter_nodes(self, indent, nodenamefunc, nodeattrfunc, filter_):
|
83 |
+
for node in PreOrderIter(self.node, filter_=filter_, stop=self.stop, maxlevel=self.maxlevel):
|
84 |
+
nodename = nodenamefunc(node)
|
85 |
+
nodeattr = nodeattrfunc(node)
|
86 |
+
nodeattr = " {%s}" % nodeattr if nodeattr is not None else ""
|
87 |
+
yield '%s%s' % (DotExporter.esc(nodename), nodeattr)
|
88 |
+
|
89 |
+
def __iter(self, indent, nodenamefunc, nodeattrfunc, edgeattrfunc, edgetypefunc, filter_):
|
90 |
+
for node in self.__iter_nodes(indent, nodenamefunc, nodeattrfunc, filter_):
|
91 |
+
yield node
|
92 |
+
|
93 |
+
|
94 |
+
class TokenIdNode(Node):
|
95 |
+
def __init__(self, name, parent=None, children=None, **kwargs):
|
96 |
+
super().__init__(name, parent, children, **kwargs)
|
97 |
+
self.input_ids = kwargs.get('input_ids', [])
|
98 |
+
self.prob = kwargs.get('prob', np.float32(0.0))
|
99 |
+
|
100 |
+
|
101 |
+
def split_tree(soup: bs4.BeautifulSoup, max_node_words=0) -> List[Tuple[bs4.element.Tag, List[str], bool]]:
|
102 |
+
word_count = len(soup.get_text().split())
|
103 |
+
if word_count > max_node_words:
|
104 |
+
possible_trees = [(soup, [])]
|
105 |
+
target_trees = [] # [(tag, path, is_leaf)]
|
106 |
+
# split the entire dom tee into subtrees, until the length of the subtree is less than max_node_words words
|
107 |
+
# find all possible trees
|
108 |
+
while True:
|
109 |
+
if len(possible_trees) == 0:
|
110 |
+
break
|
111 |
+
tree = possible_trees.pop(0)
|
112 |
+
tag_children = defaultdict(int)
|
113 |
+
bare_word_count = 0
|
114 |
+
# count child tags
|
115 |
+
for child in tree[0].contents:
|
116 |
+
if isinstance(child, bs4.element.Tag):
|
117 |
+
tag_children[child.name] += 1
|
118 |
+
_tag_children = {k: 0 for k in tag_children.keys()}
|
119 |
+
|
120 |
+
# check if the tree can be split
|
121 |
+
for child in tree[0].contents:
|
122 |
+
if isinstance(child, bs4.element.Tag):
|
123 |
+
# change child tag with duplicate names
|
124 |
+
if tag_children[child.name] > 1:
|
125 |
+
new_name = f"{child.name}{_tag_children[child.name]}"
|
126 |
+
new_tree = (child, tree[1] + [new_name])
|
127 |
+
_tag_children[child.name] += 1
|
128 |
+
child.name = new_name
|
129 |
+
else:
|
130 |
+
new_tree = (child, tree[1] + [child.name])
|
131 |
+
word_count = len(child.get_text().split())
|
132 |
+
# add node with more than max_node_words words, and recursion depth is less than 64
|
133 |
+
if word_count > max_node_words and len(new_tree[1]) < 64:
|
134 |
+
possible_trees.append(new_tree)
|
135 |
+
else:
|
136 |
+
target_trees.append((new_tree[0], new_tree[1], True))
|
137 |
+
else:
|
138 |
+
bare_word_count += len(str(child).split())
|
139 |
+
|
140 |
+
# add leaf node
|
141 |
+
if len(tag_children) == 0:
|
142 |
+
target_trees.append((tree[0], tree[1], True))
|
143 |
+
# add node with more than max_node_words bare words
|
144 |
+
elif bare_word_count > max_node_words:
|
145 |
+
target_trees.append((tree[0], tree[1], False))
|
146 |
+
else:
|
147 |
+
soup_children = [c for c in soup.contents if isinstance(c, bs4.element.Tag)]
|
148 |
+
if len(soup_children) == 1:
|
149 |
+
target_trees = [(soup_children[0], [soup_children[0].name], True)]
|
150 |
+
else:
|
151 |
+
# add an html tag to wrap all children
|
152 |
+
new_soup = bs4.BeautifulSoup("", 'html.parser')
|
153 |
+
new_tag = new_soup.new_tag("html")
|
154 |
+
new_soup.append(new_tag)
|
155 |
+
for child in soup_children:
|
156 |
+
new_tag.append(child)
|
157 |
+
target_trees = [(new_tag, ["html"], True)]
|
158 |
+
return target_trees
|
159 |
+
|
160 |
+
logger = logging.get_logger(__name__)
|
161 |
+
|
162 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
163 |
+
|
164 |
+
|
165 |
+
class LlamaRMSNorm(nn.Module):
|
166 |
+
def __init__(self, hidden_size, eps=1e-6):
|
167 |
+
"""
|
168 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
169 |
+
"""
|
170 |
+
super().__init__()
|
171 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
172 |
+
self.variance_epsilon = eps
|
173 |
+
|
174 |
+
def forward(self, hidden_states):
|
175 |
+
input_dtype = hidden_states.dtype
|
176 |
+
hidden_states = hidden_states.to(torch.float32)
|
177 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
178 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
179 |
+
return self.weight * hidden_states.to(input_dtype)
|
180 |
+
|
181 |
+
def extra_repr(self):
|
182 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
183 |
+
|
184 |
+
|
185 |
+
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
|
186 |
+
|
187 |
+
|
188 |
+
class LlamaRotaryEmbedding(nn.Module):
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
dim=None,
|
192 |
+
max_position_embeddings=2048,
|
193 |
+
base=10000,
|
194 |
+
device=None,
|
195 |
+
scaling_factor=1.0,
|
196 |
+
rope_type="default",
|
197 |
+
config: Optional[LlamaConfig] = None,
|
198 |
+
):
|
199 |
+
super().__init__()
|
200 |
+
# TODO (joao): remove the `if` below, only used for BC
|
201 |
+
self.rope_kwargs = {}
|
202 |
+
if config is None:
|
203 |
+
logger.warning_once(
|
204 |
+
"`LlamaRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
205 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
206 |
+
)
|
207 |
+
self.rope_kwargs = {
|
208 |
+
"rope_type": rope_type,
|
209 |
+
"factor": scaling_factor,
|
210 |
+
"dim": dim,
|
211 |
+
"base": base,
|
212 |
+
"max_position_embeddings": max_position_embeddings,
|
213 |
+
}
|
214 |
+
self.rope_type = rope_type
|
215 |
+
self.max_seq_len_cached = max_position_embeddings
|
216 |
+
self.original_max_seq_len = max_position_embeddings
|
217 |
+
else:
|
218 |
+
# BC: "rope_type" was originally "type"
|
219 |
+
if config.rope_scaling is not None:
|
220 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
221 |
+
else:
|
222 |
+
self.rope_type = "default"
|
223 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
224 |
+
self.original_max_seq_len = config.max_position_embeddings
|
225 |
+
|
226 |
+
self.config = config
|
227 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
228 |
+
|
229 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
230 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
231 |
+
self.original_inv_freq = self.inv_freq
|
232 |
+
|
233 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
234 |
+
"""
|
235 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
236 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
237 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
238 |
+
"""
|
239 |
+
seq_len = torch.max(position_ids) + 1
|
240 |
+
if seq_len > self.max_seq_len_cached: # growth
|
241 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
242 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
243 |
+
)
|
244 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
245 |
+
self.max_seq_len_cached = seq_len
|
246 |
+
|
247 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
248 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
249 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
250 |
+
|
251 |
+
@torch.no_grad()
|
252 |
+
def forward(self, x, position_ids):
|
253 |
+
if "dynamic" in self.rope_type:
|
254 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
255 |
+
|
256 |
+
# Core RoPE block
|
257 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
258 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
259 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
260 |
+
device_type = x.device.type
|
261 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
262 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
263 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
264 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
265 |
+
cos = emb.cos()
|
266 |
+
sin = emb.sin()
|
267 |
+
|
268 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
269 |
+
cos = cos * self.attention_scaling
|
270 |
+
sin = sin * self.attention_scaling
|
271 |
+
|
272 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
273 |
+
|
274 |
+
|
275 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
276 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
277 |
+
|
278 |
+
def __init__(self, *args, **kwargs):
|
279 |
+
logger.warning_once(
|
280 |
+
"`LlamaLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
281 |
+
"`LlamaRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
282 |
+
)
|
283 |
+
kwargs["rope_type"] = "linear"
|
284 |
+
super().__init__(*args, **kwargs)
|
285 |
+
|
286 |
+
|
287 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
288 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
289 |
+
|
290 |
+
def __init__(self, *args, **kwargs):
|
291 |
+
logger.warning_once(
|
292 |
+
"`LlamaDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.46. Please use "
|
293 |
+
"`LlamaRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
294 |
+
"__init__)."
|
295 |
+
)
|
296 |
+
kwargs["rope_type"] = "dynamic"
|
297 |
+
super().__init__(*args, **kwargs)
|
298 |
+
|
299 |
+
|
300 |
+
def rotate_half(x):
|
301 |
+
"""Rotates half the hidden dims of the input."""
|
302 |
+
x1 = x[..., : x.shape[-1] // 2]
|
303 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
304 |
+
return torch.cat((-x2, x1), dim=-1)
|
305 |
+
|
306 |
+
|
307 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
308 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
q (`torch.Tensor`): The query tensor.
|
312 |
+
k (`torch.Tensor`): The key tensor.
|
313 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
314 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
315 |
+
position_ids (`torch.Tensor`, *optional*):
|
316 |
+
Deprecated and unused.
|
317 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
318 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
319 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
320 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
321 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
322 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
323 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
324 |
+
Returns:
|
325 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
326 |
+
"""
|
327 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
328 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
329 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
330 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
331 |
+
return q_embed, k_embed
|
332 |
+
|
333 |
+
|
334 |
+
class LlamaMLP(nn.Module):
|
335 |
+
def __init__(self, config):
|
336 |
+
super().__init__()
|
337 |
+
self.config = config
|
338 |
+
self.hidden_size = config.hidden_size
|
339 |
+
self.intermediate_size = config.intermediate_size
|
340 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
341 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
342 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
343 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
344 |
+
|
345 |
+
def forward(self, x):
|
346 |
+
if self.config.pretraining_tp > 1:
|
347 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
348 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
349 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
350 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
351 |
+
|
352 |
+
gate_proj = torch.cat(
|
353 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
354 |
+
)
|
355 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
356 |
+
|
357 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
358 |
+
down_proj = [
|
359 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
360 |
+
]
|
361 |
+
down_proj = sum(down_proj)
|
362 |
+
else:
|
363 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
364 |
+
|
365 |
+
return down_proj
|
366 |
+
|
367 |
+
|
368 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
369 |
+
"""
|
370 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
371 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
372 |
+
"""
|
373 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
374 |
+
if n_rep == 1:
|
375 |
+
return hidden_states
|
376 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
377 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
378 |
+
|
379 |
+
|
380 |
+
class LlamaAttention(nn.Module):
|
381 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
382 |
+
|
383 |
+
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
384 |
+
super().__init__()
|
385 |
+
self.config = config
|
386 |
+
self.layer_idx = layer_idx
|
387 |
+
if layer_idx is None:
|
388 |
+
logger.warning_once(
|
389 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
390 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
391 |
+
"when creating this class."
|
392 |
+
)
|
393 |
+
|
394 |
+
self.attention_dropout = config.attention_dropout
|
395 |
+
self.hidden_size = config.hidden_size
|
396 |
+
self.num_heads = config.num_attention_heads
|
397 |
+
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
|
398 |
+
self.num_key_value_heads = config.num_key_value_heads
|
399 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
400 |
+
self.max_position_embeddings = config.max_position_embeddings
|
401 |
+
self.rope_theta = config.rope_theta
|
402 |
+
self.is_causal = True
|
403 |
+
|
404 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
405 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
406 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
407 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
408 |
+
|
409 |
+
# TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
|
410 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
|
411 |
+
|
412 |
+
def forward(
|
413 |
+
self,
|
414 |
+
hidden_states: torch.Tensor,
|
415 |
+
attention_mask: Optional[torch.Tensor] = None,
|
416 |
+
position_ids: Optional[torch.LongTensor] = None,
|
417 |
+
past_key_value: Optional[Cache] = None,
|
418 |
+
output_attentions: bool = False,
|
419 |
+
use_cache: bool = False,
|
420 |
+
cache_position: Optional[torch.LongTensor] = None,
|
421 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
422 |
+
**kwargs,
|
423 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
424 |
+
bsz, q_len, _ = hidden_states.size()
|
425 |
+
|
426 |
+
if self.config.pretraining_tp > 1:
|
427 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
428 |
+
query_slices = self.q_proj.weight.split(
|
429 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
430 |
+
)
|
431 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
432 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
433 |
+
|
434 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
435 |
+
query_states = torch.cat(query_states, dim=-1)
|
436 |
+
|
437 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
438 |
+
key_states = torch.cat(key_states, dim=-1)
|
439 |
+
|
440 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
441 |
+
value_states = torch.cat(value_states, dim=-1)
|
442 |
+
|
443 |
+
else:
|
444 |
+
query_states = self.q_proj(hidden_states)
|
445 |
+
key_states = self.k_proj(hidden_states)
|
446 |
+
value_states = self.v_proj(hidden_states)
|
447 |
+
|
448 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
449 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
450 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
451 |
+
|
452 |
+
if position_embeddings is None:
|
453 |
+
logger.warning_once(
|
454 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
455 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
456 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
457 |
+
"removed and `position_embeddings` will be mandatory."
|
458 |
+
)
|
459 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
460 |
+
else:
|
461 |
+
cos, sin = position_embeddings
|
462 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
463 |
+
|
464 |
+
if past_key_value is not None:
|
465 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
466 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
467 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
468 |
+
|
469 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
470 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
471 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
472 |
+
|
473 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
474 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
475 |
+
attn_weights = attn_weights + causal_mask
|
476 |
+
|
477 |
+
# upcast attention to fp32
|
478 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
479 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
480 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
481 |
+
|
482 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
483 |
+
raise ValueError(
|
484 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
485 |
+
f" {attn_output.size()}"
|
486 |
+
)
|
487 |
+
|
488 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
489 |
+
|
490 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
491 |
+
|
492 |
+
if self.config.pretraining_tp > 1:
|
493 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
494 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
495 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
496 |
+
else:
|
497 |
+
attn_output = self.o_proj(attn_output)
|
498 |
+
|
499 |
+
if not output_attentions:
|
500 |
+
attn_weights = None
|
501 |
+
|
502 |
+
return attn_output, attn_weights, past_key_value
|
503 |
+
|
504 |
+
|
505 |
+
class LlamaFlashAttention2(LlamaAttention):
|
506 |
+
"""
|
507 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
508 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
509 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
510 |
+
"""
|
511 |
+
|
512 |
+
def __init__(self, *args, **kwargs):
|
513 |
+
super().__init__(*args, **kwargs)
|
514 |
+
|
515 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
516 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
517 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
518 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
519 |
+
|
520 |
+
def forward(
|
521 |
+
self,
|
522 |
+
hidden_states: torch.Tensor,
|
523 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
524 |
+
position_ids: Optional[torch.LongTensor] = None,
|
525 |
+
past_key_value: Optional[Cache] = None,
|
526 |
+
output_attentions: bool = False,
|
527 |
+
use_cache: bool = False,
|
528 |
+
cache_position: Optional[torch.LongTensor] = None,
|
529 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
530 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
531 |
+
if isinstance(past_key_value, StaticCache):
|
532 |
+
raise ValueError(
|
533 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
534 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
535 |
+
)
|
536 |
+
|
537 |
+
output_attentions = False
|
538 |
+
|
539 |
+
bsz, q_len, _ = hidden_states.size()
|
540 |
+
|
541 |
+
query_states = self.q_proj(hidden_states)
|
542 |
+
key_states = self.k_proj(hidden_states)
|
543 |
+
value_states = self.v_proj(hidden_states)
|
544 |
+
|
545 |
+
# Flash attention requires the input to have the shape
|
546 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
547 |
+
# therefore we just need to keep the original shape
|
548 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
549 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
550 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
551 |
+
|
552 |
+
if position_embeddings is None:
|
553 |
+
logger.warning_once(
|
554 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
555 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
556 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
557 |
+
"removed and `position_embeddings` will be mandatory."
|
558 |
+
)
|
559 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
560 |
+
else:
|
561 |
+
cos, sin = position_embeddings
|
562 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
563 |
+
|
564 |
+
if past_key_value is not None:
|
565 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
566 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
567 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
568 |
+
|
569 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
570 |
+
# to be able to avoid many of these transpose/reshape/view.
|
571 |
+
query_states = query_states.transpose(1, 2)
|
572 |
+
key_states = key_states.transpose(1, 2)
|
573 |
+
value_states = value_states.transpose(1, 2)
|
574 |
+
|
575 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
576 |
+
|
577 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
578 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
579 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
580 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
581 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
582 |
+
|
583 |
+
input_dtype = query_states.dtype
|
584 |
+
if input_dtype == torch.float32:
|
585 |
+
if torch.is_autocast_enabled():
|
586 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
587 |
+
# Handle the case where the model is quantized
|
588 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
589 |
+
target_dtype = self.config._pre_quantization_dtype
|
590 |
+
else:
|
591 |
+
target_dtype = self.q_proj.weight.dtype
|
592 |
+
|
593 |
+
logger.warning_once(
|
594 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
595 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
596 |
+
f" {target_dtype}."
|
597 |
+
)
|
598 |
+
|
599 |
+
query_states = query_states.to(target_dtype)
|
600 |
+
key_states = key_states.to(target_dtype)
|
601 |
+
value_states = value_states.to(target_dtype)
|
602 |
+
|
603 |
+
attn_output = _flash_attention_forward(
|
604 |
+
query_states,
|
605 |
+
key_states,
|
606 |
+
value_states,
|
607 |
+
attention_mask,
|
608 |
+
q_len,
|
609 |
+
position_ids=position_ids,
|
610 |
+
dropout=dropout_rate,
|
611 |
+
sliding_window=getattr(self, "sliding_window", None),
|
612 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
613 |
+
is_causal=self.is_causal,
|
614 |
+
)
|
615 |
+
|
616 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
617 |
+
attn_output = self.o_proj(attn_output)
|
618 |
+
|
619 |
+
if not output_attentions:
|
620 |
+
attn_weights = None
|
621 |
+
|
622 |
+
return attn_output, attn_weights, past_key_value
|
623 |
+
|
624 |
+
|
625 |
+
class LlamaSdpaAttention(LlamaAttention):
|
626 |
+
"""
|
627 |
+
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
628 |
+
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
629 |
+
SDPA API.
|
630 |
+
"""
|
631 |
+
|
632 |
+
# Adapted from LlamaAttention.forward
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
hidden_states: torch.Tensor,
|
636 |
+
attention_mask: Optional[torch.Tensor] = None,
|
637 |
+
position_ids: Optional[torch.LongTensor] = None,
|
638 |
+
past_key_value: Optional[Cache] = None,
|
639 |
+
output_attentions: bool = False,
|
640 |
+
use_cache: bool = False,
|
641 |
+
cache_position: Optional[torch.LongTensor] = None,
|
642 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
643 |
+
**kwargs,
|
644 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
645 |
+
if output_attentions:
|
646 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
647 |
+
logger.warning_once(
|
648 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
649 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
650 |
+
)
|
651 |
+
return super().forward(
|
652 |
+
hidden_states=hidden_states,
|
653 |
+
attention_mask=attention_mask,
|
654 |
+
position_ids=position_ids,
|
655 |
+
past_key_value=past_key_value,
|
656 |
+
output_attentions=output_attentions,
|
657 |
+
use_cache=use_cache,
|
658 |
+
cache_position=cache_position,
|
659 |
+
position_embeddings=position_embeddings,
|
660 |
+
)
|
661 |
+
|
662 |
+
bsz, q_len, _ = hidden_states.size()
|
663 |
+
|
664 |
+
query_states = self.q_proj(hidden_states)
|
665 |
+
key_states = self.k_proj(hidden_states)
|
666 |
+
value_states = self.v_proj(hidden_states)
|
667 |
+
|
668 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
669 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
670 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
671 |
+
|
672 |
+
if position_embeddings is None:
|
673 |
+
logger.warning_once(
|
674 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
675 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
676 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
677 |
+
"removed and `position_embeddings` will be mandatory."
|
678 |
+
)
|
679 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
680 |
+
else:
|
681 |
+
cos, sin = position_embeddings
|
682 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
683 |
+
|
684 |
+
if past_key_value is not None:
|
685 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
686 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
687 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
688 |
+
|
689 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
690 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
691 |
+
|
692 |
+
causal_mask = attention_mask
|
693 |
+
if attention_mask is not None:
|
694 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
695 |
+
|
696 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
697 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
698 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
699 |
+
query_states = query_states.contiguous()
|
700 |
+
key_states = key_states.contiguous()
|
701 |
+
value_states = value_states.contiguous()
|
702 |
+
|
703 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
704 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
705 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
706 |
+
|
707 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
708 |
+
query_states,
|
709 |
+
key_states,
|
710 |
+
value_states,
|
711 |
+
attn_mask=causal_mask,
|
712 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
713 |
+
is_causal=is_causal,
|
714 |
+
)
|
715 |
+
|
716 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
717 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
718 |
+
|
719 |
+
attn_output = self.o_proj(attn_output)
|
720 |
+
|
721 |
+
return attn_output, None, past_key_value
|
722 |
+
|
723 |
+
|
724 |
+
LLAMA_ATTENTION_CLASSES = {
|
725 |
+
"eager": LlamaAttention,
|
726 |
+
"flash_attention_2": LlamaFlashAttention2,
|
727 |
+
"sdpa": LlamaSdpaAttention,
|
728 |
+
}
|
729 |
+
|
730 |
+
|
731 |
+
class LlamaDecoderLayer(nn.Module):
|
732 |
+
def __init__(self, config: LlamaConfig, layer_idx: int):
|
733 |
+
super().__init__()
|
734 |
+
self.hidden_size = config.hidden_size
|
735 |
+
|
736 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
737 |
+
|
738 |
+
self.mlp = LlamaMLP(config)
|
739 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
740 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
741 |
+
|
742 |
+
def forward(
|
743 |
+
self,
|
744 |
+
hidden_states: torch.Tensor,
|
745 |
+
attention_mask: Optional[torch.Tensor] = None,
|
746 |
+
position_ids: Optional[torch.LongTensor] = None,
|
747 |
+
past_key_value: Optional[Cache] = None,
|
748 |
+
output_attentions: Optional[bool] = False,
|
749 |
+
use_cache: Optional[bool] = False,
|
750 |
+
cache_position: Optional[torch.LongTensor] = None,
|
751 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
752 |
+
**kwargs,
|
753 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
754 |
+
"""
|
755 |
+
Args:
|
756 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
757 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
758 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
759 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
760 |
+
output_attentions (`bool`, *optional*):
|
761 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
762 |
+
returned tensors for more detail.
|
763 |
+
use_cache (`bool`, *optional*):
|
764 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
765 |
+
(see `past_key_values`).
|
766 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
767 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
768 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
769 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
770 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
771 |
+
with `head_dim` being the embedding dimension of each attention head.
|
772 |
+
kwargs (`dict`, *optional*):
|
773 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
774 |
+
into the model
|
775 |
+
"""
|
776 |
+
residual = hidden_states
|
777 |
+
|
778 |
+
hidden_states = self.input_layernorm(hidden_states)
|
779 |
+
|
780 |
+
# Self Attention
|
781 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
782 |
+
hidden_states=hidden_states,
|
783 |
+
attention_mask=attention_mask,
|
784 |
+
position_ids=position_ids,
|
785 |
+
past_key_value=past_key_value,
|
786 |
+
output_attentions=output_attentions,
|
787 |
+
use_cache=use_cache,
|
788 |
+
cache_position=cache_position,
|
789 |
+
position_embeddings=position_embeddings,
|
790 |
+
**kwargs,
|
791 |
+
)
|
792 |
+
hidden_states = residual + hidden_states
|
793 |
+
|
794 |
+
# Fully Connected
|
795 |
+
residual = hidden_states
|
796 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
797 |
+
hidden_states = self.mlp(hidden_states)
|
798 |
+
hidden_states = residual + hidden_states
|
799 |
+
|
800 |
+
outputs = (hidden_states,)
|
801 |
+
|
802 |
+
if output_attentions:
|
803 |
+
outputs += (self_attn_weights,)
|
804 |
+
|
805 |
+
if use_cache:
|
806 |
+
outputs += (present_key_value,)
|
807 |
+
|
808 |
+
return outputs
|
809 |
+
|
810 |
+
|
811 |
+
LLAMA_START_DOCSTRING = r"""
|
812 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
813 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
814 |
+
etc.)
|
815 |
+
|
816 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
817 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
818 |
+
and behavior.
|
819 |
+
|
820 |
+
Parameters:
|
821 |
+
config ([`LlamaConfig`]):
|
822 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
823 |
+
load the weights associated with the model, only the configuration. Check out the
|
824 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
825 |
+
"""
|
826 |
+
|
827 |
+
|
828 |
+
@add_start_docstrings(
|
829 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
830 |
+
LLAMA_START_DOCSTRING,
|
831 |
+
)
|
832 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
833 |
+
config_class = LlamaConfig
|
834 |
+
base_model_prefix = "model"
|
835 |
+
supports_gradient_checkpointing = True
|
836 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
837 |
+
_skip_keys_device_placement = ["past_key_values"]
|
838 |
+
_supports_flash_attn_2 = True
|
839 |
+
_supports_sdpa = True
|
840 |
+
_supports_cache_class = True
|
841 |
+
_supports_quantized_cache = True
|
842 |
+
_supports_static_cache = True
|
843 |
+
|
844 |
+
def _init_weights(self, module):
|
845 |
+
std = self.config.initializer_range
|
846 |
+
if isinstance(module, nn.Linear):
|
847 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
848 |
+
if module.bias is not None:
|
849 |
+
module.bias.data.zero_()
|
850 |
+
elif isinstance(module, nn.Embedding):
|
851 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
852 |
+
if module.padding_idx is not None:
|
853 |
+
module.weight.data[module.padding_idx].zero_()
|
854 |
+
|
855 |
+
|
856 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
857 |
+
Args:
|
858 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
859 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
860 |
+
it.
|
861 |
+
|
862 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
863 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
864 |
+
|
865 |
+
[What are input IDs?](../glossary#input-ids)
|
866 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
867 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
868 |
+
|
869 |
+
- 1 for tokens that are **not masked**,
|
870 |
+
- 0 for tokens that are **masked**.
|
871 |
+
|
872 |
+
[What are attention masks?](../glossary#attention-mask)
|
873 |
+
|
874 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
875 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
876 |
+
|
877 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
878 |
+
`past_key_values`).
|
879 |
+
|
880 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
881 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
882 |
+
information on the default strategy.
|
883 |
+
|
884 |
+
- 1 indicates the head is **not masked**,
|
885 |
+
- 0 indicates the head is **masked**.
|
886 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
887 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
888 |
+
config.n_positions - 1]`.
|
889 |
+
|
890 |
+
[What are position IDs?](../glossary#position-ids)
|
891 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
892 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
893 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
894 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
895 |
+
|
896 |
+
Two formats are allowed:
|
897 |
+
- a [`~cache_utils.Cache`] instance, see our
|
898 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
899 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
900 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
901 |
+
cache format.
|
902 |
+
|
903 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
904 |
+
legacy cache format will be returned.
|
905 |
+
|
906 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
907 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
908 |
+
of shape `(batch_size, sequence_length)`.
|
909 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
910 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
911 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
912 |
+
model's internal embedding lookup matrix.
|
913 |
+
use_cache (`bool`, *optional*):
|
914 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
915 |
+
`past_key_values`).
|
916 |
+
output_attentions (`bool`, *optional*):
|
917 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
918 |
+
tensors for more detail.
|
919 |
+
output_hidden_states (`bool`, *optional*):
|
920 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
921 |
+
more detail.
|
922 |
+
return_dict (`bool`, *optional*):
|
923 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
924 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
925 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
926 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
927 |
+
the complete sequence length.
|
928 |
+
"""
|
929 |
+
|
930 |
+
|
931 |
+
@add_start_docstrings(
|
932 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
933 |
+
LLAMA_START_DOCSTRING,
|
934 |
+
)
|
935 |
+
class LlamaModel(LlamaPreTrainedModel):
|
936 |
+
"""
|
937 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
938 |
+
|
939 |
+
Args:
|
940 |
+
config: LlamaConfig
|
941 |
+
"""
|
942 |
+
|
943 |
+
def __init__(self, config: LlamaConfig):
|
944 |
+
super().__init__(config)
|
945 |
+
self.padding_idx = config.pad_token_id
|
946 |
+
self.vocab_size = config.vocab_size
|
947 |
+
|
948 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
949 |
+
self.layers = nn.ModuleList(
|
950 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
951 |
+
)
|
952 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
953 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
954 |
+
self.gradient_checkpointing = False
|
955 |
+
|
956 |
+
# Initialize weights and apply final processing
|
957 |
+
self.post_init()
|
958 |
+
|
959 |
+
def get_input_embeddings(self):
|
960 |
+
return self.embed_tokens
|
961 |
+
|
962 |
+
def set_input_embeddings(self, value):
|
963 |
+
self.embed_tokens = value
|
964 |
+
|
965 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
966 |
+
def forward(
|
967 |
+
self,
|
968 |
+
input_ids: torch.LongTensor = None,
|
969 |
+
attention_mask: Optional[torch.Tensor] = None,
|
970 |
+
position_ids: Optional[torch.LongTensor] = None,
|
971 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
972 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
973 |
+
use_cache: Optional[bool] = None,
|
974 |
+
output_attentions: Optional[bool] = None,
|
975 |
+
output_hidden_states: Optional[bool] = None,
|
976 |
+
return_dict: Optional[bool] = None,
|
977 |
+
cache_position: Optional[torch.LongTensor] = None,
|
978 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
979 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
980 |
+
output_hidden_states = (
|
981 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
982 |
+
)
|
983 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
984 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
985 |
+
|
986 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
987 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
988 |
+
|
989 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
990 |
+
logger.warning_once(
|
991 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
992 |
+
)
|
993 |
+
use_cache = False
|
994 |
+
|
995 |
+
if inputs_embeds is None:
|
996 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
997 |
+
|
998 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
999 |
+
return_legacy_cache = False
|
1000 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
1001 |
+
return_legacy_cache = True
|
1002 |
+
if past_key_values is None:
|
1003 |
+
past_key_values = DynamicCache()
|
1004 |
+
else:
|
1005 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1006 |
+
logger.warning_once(
|
1007 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
1008 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
1009 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
if cache_position is None:
|
1013 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1014 |
+
cache_position = torch.arange(
|
1015 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1016 |
+
)
|
1017 |
+
if position_ids is None:
|
1018 |
+
position_ids = cache_position.unsqueeze(0)
|
1019 |
+
|
1020 |
+
causal_mask = self._update_causal_mask(
|
1021 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
1022 |
+
)
|
1023 |
+
hidden_states = inputs_embeds
|
1024 |
+
|
1025 |
+
# create position embeddings to be shared across the decoder layers
|
1026 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
1027 |
+
|
1028 |
+
# decoder layers
|
1029 |
+
all_hidden_states = () if output_hidden_states else None
|
1030 |
+
all_self_attns = () if output_attentions else None
|
1031 |
+
next_decoder_cache = None
|
1032 |
+
|
1033 |
+
for decoder_layer in self.layers:
|
1034 |
+
if output_hidden_states:
|
1035 |
+
all_hidden_states += (hidden_states,)
|
1036 |
+
|
1037 |
+
if self.gradient_checkpointing and self.training:
|
1038 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1039 |
+
decoder_layer.__call__,
|
1040 |
+
hidden_states,
|
1041 |
+
causal_mask,
|
1042 |
+
position_ids,
|
1043 |
+
past_key_values,
|
1044 |
+
output_attentions,
|
1045 |
+
use_cache,
|
1046 |
+
cache_position,
|
1047 |
+
position_embeddings,
|
1048 |
+
)
|
1049 |
+
else:
|
1050 |
+
layer_outputs = decoder_layer(
|
1051 |
+
hidden_states,
|
1052 |
+
attention_mask=causal_mask,
|
1053 |
+
position_ids=position_ids,
|
1054 |
+
past_key_value=past_key_values,
|
1055 |
+
output_attentions=output_attentions,
|
1056 |
+
use_cache=use_cache,
|
1057 |
+
cache_position=cache_position,
|
1058 |
+
position_embeddings=position_embeddings,
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
hidden_states = layer_outputs[0]
|
1062 |
+
|
1063 |
+
if use_cache:
|
1064 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1065 |
+
|
1066 |
+
if output_attentions:
|
1067 |
+
all_self_attns += (layer_outputs[1],)
|
1068 |
+
|
1069 |
+
hidden_states = self.norm(hidden_states)
|
1070 |
+
|
1071 |
+
# add hidden states from the last decoder layer
|
1072 |
+
if output_hidden_states:
|
1073 |
+
all_hidden_states += (hidden_states,)
|
1074 |
+
|
1075 |
+
next_cache = next_decoder_cache if use_cache else None
|
1076 |
+
if return_legacy_cache:
|
1077 |
+
next_cache = next_cache.to_legacy_cache()
|
1078 |
+
|
1079 |
+
if not return_dict:
|
1080 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1081 |
+
return BaseModelOutputWithPast(
|
1082 |
+
last_hidden_state=hidden_states,
|
1083 |
+
past_key_values=next_cache,
|
1084 |
+
hidden_states=all_hidden_states,
|
1085 |
+
attentions=all_self_attns,
|
1086 |
+
)
|
1087 |
+
|
1088 |
+
def _update_causal_mask(
|
1089 |
+
self,
|
1090 |
+
attention_mask: torch.Tensor,
|
1091 |
+
input_tensor: torch.Tensor,
|
1092 |
+
cache_position: torch.Tensor,
|
1093 |
+
past_key_values: Cache,
|
1094 |
+
output_attentions: bool,
|
1095 |
+
):
|
1096 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1097 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1098 |
+
return attention_mask
|
1099 |
+
return None
|
1100 |
+
|
1101 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1102 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1103 |
+
# to infer the attention mask.
|
1104 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1105 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1106 |
+
|
1107 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1108 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1109 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1110 |
+
attention_mask,
|
1111 |
+
inputs_embeds=input_tensor,
|
1112 |
+
past_key_values_length=past_seen_tokens,
|
1113 |
+
is_training=self.training,
|
1114 |
+
):
|
1115 |
+
return None
|
1116 |
+
|
1117 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1118 |
+
sequence_length = input_tensor.shape[1]
|
1119 |
+
if using_static_cache:
|
1120 |
+
target_length = past_key_values.get_max_cache_shape()
|
1121 |
+
else:
|
1122 |
+
target_length = (
|
1123 |
+
attention_mask.shape[-1]
|
1124 |
+
if isinstance(attention_mask, torch.Tensor)
|
1125 |
+
else past_seen_tokens + sequence_length + 1
|
1126 |
+
)
|
1127 |
+
|
1128 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1129 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
1130 |
+
attention_mask,
|
1131 |
+
sequence_length=sequence_length,
|
1132 |
+
target_length=target_length,
|
1133 |
+
dtype=dtype,
|
1134 |
+
device=device,
|
1135 |
+
cache_position=cache_position,
|
1136 |
+
batch_size=input_tensor.shape[0],
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
if (
|
1140 |
+
self.config._attn_implementation == "sdpa"
|
1141 |
+
and attention_mask is not None
|
1142 |
+
and attention_mask.device.type == "cuda"
|
1143 |
+
and not output_attentions
|
1144 |
+
):
|
1145 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1146 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1147 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1148 |
+
min_dtype = torch.finfo(dtype).min
|
1149 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1150 |
+
|
1151 |
+
return causal_mask
|
1152 |
+
|
1153 |
+
@staticmethod
|
1154 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
1155 |
+
attention_mask: torch.Tensor,
|
1156 |
+
sequence_length: int,
|
1157 |
+
target_length: int,
|
1158 |
+
dtype: torch.dtype,
|
1159 |
+
device: torch.device,
|
1160 |
+
cache_position: torch.Tensor,
|
1161 |
+
batch_size: int,
|
1162 |
+
):
|
1163 |
+
"""
|
1164 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
1165 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
1166 |
+
|
1167 |
+
Args:
|
1168 |
+
attention_mask (`torch.Tensor`):
|
1169 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
1170 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
1171 |
+
sequence_length (`int`):
|
1172 |
+
The sequence length being processed.
|
1173 |
+
target_length (`int`):
|
1174 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
1175 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
1176 |
+
dtype (`torch.dtype`):
|
1177 |
+
The dtype to use for the 4D attention mask.
|
1178 |
+
device (`torch.device`):
|
1179 |
+
The device to plcae the 4D attention mask on.
|
1180 |
+
cache_position (`torch.Tensor`):
|
1181 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1182 |
+
batch_size (`torch.Tensor`):
|
1183 |
+
Batch size.
|
1184 |
+
"""
|
1185 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1186 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
1187 |
+
causal_mask = attention_mask
|
1188 |
+
else:
|
1189 |
+
min_dtype = torch.finfo(dtype).min
|
1190 |
+
causal_mask = torch.full(
|
1191 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1192 |
+
)
|
1193 |
+
if sequence_length != 1:
|
1194 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1195 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
1196 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
1197 |
+
if attention_mask is not None:
|
1198 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1199 |
+
mask_length = attention_mask.shape[-1]
|
1200 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
1201 |
+
padding_mask = padding_mask == 0
|
1202 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1203 |
+
padding_mask, min_dtype
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
return causal_mask
|
1207 |
+
|
1208 |
+
|
1209 |
+
class LlamaForCausalLM(LlamaPreTrainedModel, GenerationMixin):
|
1210 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1211 |
+
|
1212 |
+
def __init__(self, config):
|
1213 |
+
super().__init__(config)
|
1214 |
+
self.model = LlamaModel(config)
|
1215 |
+
self.vocab_size = config.vocab_size
|
1216 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1217 |
+
|
1218 |
+
# Initialize weights and apply final processing
|
1219 |
+
self.post_init()
|
1220 |
+
|
1221 |
+
def get_input_embeddings(self):
|
1222 |
+
return self.model.embed_tokens
|
1223 |
+
|
1224 |
+
def set_input_embeddings(self, value):
|
1225 |
+
self.model.embed_tokens = value
|
1226 |
+
|
1227 |
+
def get_output_embeddings(self):
|
1228 |
+
return self.lm_head
|
1229 |
+
|
1230 |
+
def set_output_embeddings(self, new_embeddings):
|
1231 |
+
self.lm_head = new_embeddings
|
1232 |
+
|
1233 |
+
def set_decoder(self, decoder):
|
1234 |
+
self.model = decoder
|
1235 |
+
|
1236 |
+
def get_decoder(self):
|
1237 |
+
return self.model
|
1238 |
+
|
1239 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1240 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1241 |
+
def forward(
|
1242 |
+
self,
|
1243 |
+
input_ids: torch.LongTensor = None,
|
1244 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1245 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1246 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1247 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1248 |
+
labels: Optional[torch.LongTensor] = None,
|
1249 |
+
use_cache: Optional[bool] = None,
|
1250 |
+
output_attentions: Optional[bool] = None,
|
1251 |
+
output_hidden_states: Optional[bool] = None,
|
1252 |
+
return_dict: Optional[bool] = None,
|
1253 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1254 |
+
num_logits_to_keep: int = 0,
|
1255 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1256 |
+
r"""
|
1257 |
+
Args:
|
1258 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1259 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1260 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1261 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1262 |
+
|
1263 |
+
num_logits_to_keep (`int`, *optional*):
|
1264 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
1265 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
1266 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
1267 |
+
|
1268 |
+
Returns:
|
1269 |
+
|
1270 |
+
Example:
|
1271 |
+
|
1272 |
+
```python
|
1273 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1274 |
+
|
1275 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1276 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
1277 |
+
|
1278 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1279 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1280 |
+
|
1281 |
+
>>> # Generate
|
1282 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1283 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1284 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1285 |
+
```"""
|
1286 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1287 |
+
output_hidden_states = (
|
1288 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1289 |
+
)
|
1290 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1291 |
+
|
1292 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1293 |
+
outputs = self.model(
|
1294 |
+
input_ids=input_ids,
|
1295 |
+
attention_mask=attention_mask,
|
1296 |
+
position_ids=position_ids,
|
1297 |
+
past_key_values=past_key_values,
|
1298 |
+
inputs_embeds=inputs_embeds,
|
1299 |
+
use_cache=use_cache,
|
1300 |
+
output_attentions=output_attentions,
|
1301 |
+
output_hidden_states=output_hidden_states,
|
1302 |
+
return_dict=return_dict,
|
1303 |
+
cache_position=cache_position,
|
1304 |
+
)
|
1305 |
+
|
1306 |
+
hidden_states = outputs[0]
|
1307 |
+
if self.config.pretraining_tp > 1:
|
1308 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1309 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1310 |
+
logits = torch.cat(logits, dim=-1)
|
1311 |
+
else:
|
1312 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1313 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
1314 |
+
|
1315 |
+
loss = None
|
1316 |
+
if labels is not None:
|
1317 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
1318 |
+
logits = logits.float()
|
1319 |
+
# Shift so that tokens < n predict n
|
1320 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1321 |
+
shift_labels = labels[..., 1:].contiguous()
|
1322 |
+
# Flatten the tokens
|
1323 |
+
loss_fct = CrossEntropyLoss()
|
1324 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1325 |
+
shift_labels = shift_labels.view(-1)
|
1326 |
+
# Enable model parallelism
|
1327 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1328 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1329 |
+
|
1330 |
+
if not return_dict:
|
1331 |
+
output = (logits,) + outputs[1:]
|
1332 |
+
return (loss,) + output if loss is not None else output
|
1333 |
+
|
1334 |
+
return CausalLMOutputWithPast(
|
1335 |
+
loss=loss,
|
1336 |
+
logits=logits,
|
1337 |
+
past_key_values=outputs.past_key_values,
|
1338 |
+
hidden_states=outputs.hidden_states,
|
1339 |
+
attentions=outputs.attentions,
|
1340 |
+
)
|
1341 |
+
|
1342 |
+
|
1343 |
+
@add_start_docstrings(
|
1344 |
+
"""
|
1345 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
1346 |
+
|
1347 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1348 |
+
(e.g. GPT-2) do.
|
1349 |
+
|
1350 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1351 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1352 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1353 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1354 |
+
each row of the batch).
|
1355 |
+
""",
|
1356 |
+
LLAMA_START_DOCSTRING,
|
1357 |
+
)
|
1358 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
1359 |
+
def __init__(self, config):
|
1360 |
+
super().__init__(config)
|
1361 |
+
self.num_labels = config.num_labels
|
1362 |
+
self.model = LlamaModel(config)
|
1363 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1364 |
+
|
1365 |
+
# Initialize weights and apply final processing
|
1366 |
+
self.post_init()
|
1367 |
+
|
1368 |
+
def get_input_embeddings(self):
|
1369 |
+
return self.model.embed_tokens
|
1370 |
+
|
1371 |
+
def set_input_embeddings(self, value):
|
1372 |
+
self.model.embed_tokens = value
|
1373 |
+
|
1374 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1375 |
+
def forward(
|
1376 |
+
self,
|
1377 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1378 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1379 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1380 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1381 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1382 |
+
labels: Optional[torch.LongTensor] = None,
|
1383 |
+
use_cache: Optional[bool] = None,
|
1384 |
+
output_attentions: Optional[bool] = None,
|
1385 |
+
output_hidden_states: Optional[bool] = None,
|
1386 |
+
return_dict: Optional[bool] = None,
|
1387 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1388 |
+
r"""
|
1389 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1390 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1391 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1392 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1393 |
+
"""
|
1394 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1395 |
+
|
1396 |
+
transformer_outputs = self.model(
|
1397 |
+
input_ids,
|
1398 |
+
attention_mask=attention_mask,
|
1399 |
+
position_ids=position_ids,
|
1400 |
+
past_key_values=past_key_values,
|
1401 |
+
inputs_embeds=inputs_embeds,
|
1402 |
+
use_cache=use_cache,
|
1403 |
+
output_attentions=output_attentions,
|
1404 |
+
output_hidden_states=output_hidden_states,
|
1405 |
+
return_dict=return_dict,
|
1406 |
+
)
|
1407 |
+
hidden_states = transformer_outputs[0]
|
1408 |
+
logits = self.score(hidden_states)
|
1409 |
+
|
1410 |
+
if input_ids is not None:
|
1411 |
+
batch_size = input_ids.shape[0]
|
1412 |
+
else:
|
1413 |
+
batch_size = inputs_embeds.shape[0]
|
1414 |
+
|
1415 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1416 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1417 |
+
if self.config.pad_token_id is None:
|
1418 |
+
sequence_lengths = -1
|
1419 |
+
else:
|
1420 |
+
if input_ids is not None:
|
1421 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1422 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1423 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1424 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1425 |
+
else:
|
1426 |
+
sequence_lengths = -1
|
1427 |
+
|
1428 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1429 |
+
|
1430 |
+
loss = None
|
1431 |
+
if labels is not None:
|
1432 |
+
labels = labels.to(logits.device)
|
1433 |
+
if self.config.problem_type is None:
|
1434 |
+
if self.num_labels == 1:
|
1435 |
+
self.config.problem_type = "regression"
|
1436 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1437 |
+
self.config.problem_type = "single_label_classification"
|
1438 |
+
else:
|
1439 |
+
self.config.problem_type = "multi_label_classification"
|
1440 |
+
|
1441 |
+
if self.config.problem_type == "regression":
|
1442 |
+
loss_fct = MSELoss()
|
1443 |
+
if self.num_labels == 1:
|
1444 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1445 |
+
else:
|
1446 |
+
loss = loss_fct(pooled_logits, labels)
|
1447 |
+
elif self.config.problem_type == "single_label_classification":
|
1448 |
+
loss_fct = CrossEntropyLoss()
|
1449 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1450 |
+
elif self.config.problem_type == "multi_label_classification":
|
1451 |
+
loss_fct = BCEWithLogitsLoss()
|
1452 |
+
loss = loss_fct(pooled_logits, labels)
|
1453 |
+
if not return_dict:
|
1454 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1455 |
+
return ((loss,) + output) if loss is not None else output
|
1456 |
+
|
1457 |
+
return SequenceClassifierOutputWithPast(
|
1458 |
+
loss=loss,
|
1459 |
+
logits=pooled_logits,
|
1460 |
+
past_key_values=transformer_outputs.past_key_values,
|
1461 |
+
hidden_states=transformer_outputs.hidden_states,
|
1462 |
+
attentions=transformer_outputs.attentions,
|
1463 |
+
)
|
1464 |
+
|
1465 |
+
|
1466 |
+
@add_start_docstrings(
|
1467 |
+
"""
|
1468 |
+
The Llama Model transformer with a span classification head on top for extractive question-answering tasks like
|
1469 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1470 |
+
""",
|
1471 |
+
LLAMA_START_DOCSTRING,
|
1472 |
+
)
|
1473 |
+
class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
1474 |
+
base_model_prefix = "transformer"
|
1475 |
+
|
1476 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Llama
|
1477 |
+
def __init__(self, config):
|
1478 |
+
super().__init__(config)
|
1479 |
+
self.transformer = LlamaModel(config)
|
1480 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1481 |
+
|
1482 |
+
# Initialize weights and apply final processing
|
1483 |
+
self.post_init()
|
1484 |
+
|
1485 |
+
def get_input_embeddings(self):
|
1486 |
+
return self.transformer.embed_tokens
|
1487 |
+
|
1488 |
+
def set_input_embeddings(self, value):
|
1489 |
+
self.transformer.embed_tokens = value
|
1490 |
+
|
1491 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1492 |
+
def forward(
|
1493 |
+
self,
|
1494 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1495 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1496 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1497 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1498 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1499 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1500 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1501 |
+
output_attentions: Optional[bool] = None,
|
1502 |
+
output_hidden_states: Optional[bool] = None,
|
1503 |
+
return_dict: Optional[bool] = None,
|
1504 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1505 |
+
r"""
|
1506 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1507 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1508 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1509 |
+
are not taken into account for computing the loss.
|
1510 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1511 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1512 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1513 |
+
are not taken into account for computing the loss.
|
1514 |
+
"""
|
1515 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1516 |
+
|
1517 |
+
outputs = self.transformer(
|
1518 |
+
input_ids,
|
1519 |
+
attention_mask=attention_mask,
|
1520 |
+
position_ids=position_ids,
|
1521 |
+
past_key_values=past_key_values,
|
1522 |
+
inputs_embeds=inputs_embeds,
|
1523 |
+
output_attentions=output_attentions,
|
1524 |
+
output_hidden_states=output_hidden_states,
|
1525 |
+
return_dict=return_dict,
|
1526 |
+
)
|
1527 |
+
|
1528 |
+
sequence_output = outputs[0]
|
1529 |
+
|
1530 |
+
logits = self.qa_outputs(sequence_output)
|
1531 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1532 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1533 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1534 |
+
|
1535 |
+
total_loss = None
|
1536 |
+
if start_positions is not None and end_positions is not None:
|
1537 |
+
# If we are on multi-GPU, split add a dimension
|
1538 |
+
if len(start_positions.size()) > 1:
|
1539 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1540 |
+
if len(end_positions.size()) > 1:
|
1541 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1542 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1543 |
+
ignored_index = start_logits.size(1)
|
1544 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1545 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1546 |
+
|
1547 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1548 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1549 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1550 |
+
total_loss = (start_loss + end_loss) / 2
|
1551 |
+
|
1552 |
+
if not return_dict:
|
1553 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1554 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1555 |
+
|
1556 |
+
return QuestionAnsweringModelOutput(
|
1557 |
+
loss=total_loss,
|
1558 |
+
start_logits=start_logits,
|
1559 |
+
end_logits=end_logits,
|
1560 |
+
hidden_states=outputs.hidden_states,
|
1561 |
+
attentions=outputs.attentions,
|
1562 |
+
)
|
1563 |
+
|
1564 |
+
|
1565 |
+
@add_start_docstrings(
|
1566 |
+
"""
|
1567 |
+
The Llama Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1568 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1569 |
+
""",
|
1570 |
+
LLAMA_START_DOCSTRING,
|
1571 |
+
)
|
1572 |
+
class LlamaForTokenClassification(LlamaPreTrainedModel):
|
1573 |
+
def __init__(self, config):
|
1574 |
+
super().__init__(config)
|
1575 |
+
self.num_labels = config.num_labels
|
1576 |
+
self.model = LlamaModel(config)
|
1577 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1578 |
+
classifier_dropout = config.classifier_dropout
|
1579 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1580 |
+
classifier_dropout = config.hidden_dropout
|
1581 |
+
else:
|
1582 |
+
classifier_dropout = 0.1
|
1583 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1584 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1585 |
+
|
1586 |
+
# Initialize weights and apply final processing
|
1587 |
+
self.post_init()
|
1588 |
+
|
1589 |
+
def get_input_embeddings(self):
|
1590 |
+
return self.model.embed_tokens
|
1591 |
+
|
1592 |
+
def set_input_embeddings(self, value):
|
1593 |
+
self.model.embed_tokens = value
|
1594 |
+
|
1595 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1596 |
+
def forward(
|
1597 |
+
self,
|
1598 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1599 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1600 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1601 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1602 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1603 |
+
labels: Optional[torch.LongTensor] = None,
|
1604 |
+
use_cache: Optional[bool] = None,
|
1605 |
+
output_attentions: Optional[bool] = None,
|
1606 |
+
output_hidden_states: Optional[bool] = None,
|
1607 |
+
return_dict: Optional[bool] = None,
|
1608 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1609 |
+
r"""
|
1610 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1611 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1612 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1613 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1614 |
+
"""
|
1615 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1616 |
+
|
1617 |
+
outputs = self.model(
|
1618 |
+
input_ids,
|
1619 |
+
attention_mask=attention_mask,
|
1620 |
+
position_ids=position_ids,
|
1621 |
+
past_key_values=past_key_values,
|
1622 |
+
inputs_embeds=inputs_embeds,
|
1623 |
+
use_cache=use_cache,
|
1624 |
+
output_attentions=output_attentions,
|
1625 |
+
output_hidden_states=output_hidden_states,
|
1626 |
+
return_dict=return_dict,
|
1627 |
+
)
|
1628 |
+
sequence_output = outputs[0]
|
1629 |
+
sequence_output = self.dropout(sequence_output)
|
1630 |
+
logits = self.score(sequence_output)
|
1631 |
+
|
1632 |
+
loss = None
|
1633 |
+
if labels is not None:
|
1634 |
+
loss_fct = CrossEntropyLoss()
|
1635 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1636 |
+
|
1637 |
+
if not return_dict:
|
1638 |
+
output = (logits,) + outputs[2:]
|
1639 |
+
return ((loss,) + output) if loss is not None else output
|
1640 |
+
|
1641 |
+
return TokenClassifierOutput(
|
1642 |
+
loss=loss,
|
1643 |
+
logits=logits,
|
1644 |
+
hidden_states=outputs.hidden_states,
|
1645 |
+
attentions=outputs.attentions,
|
1646 |
+
)
|
1647 |
+
|
1648 |
+
|
1649 |
+
class LlamaForHTMLTreeGeneration(LlamaPreTrainedModel):
|
1650 |
+
|
1651 |
+
def __init__(self, config):
|
1652 |
+
super().__init__(config)
|
1653 |
+
self.model = LlamaModel(config)
|
1654 |
+
self.vocab_size = config.vocab_size
|
1655 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1656 |
+
|
1657 |
+
# Initialize weights and apply final processing
|
1658 |
+
self.post_init()
|
1659 |
+
|
1660 |
+
def get_input_embeddings(self):
|
1661 |
+
return self.model.embed_tokens
|
1662 |
+
|
1663 |
+
def set_input_embeddings(self, value):
|
1664 |
+
self.model.embed_tokens = value
|
1665 |
+
|
1666 |
+
def get_output_embeddings(self):
|
1667 |
+
return self.lm_head
|
1668 |
+
|
1669 |
+
def set_output_embeddings(self, new_embeddings):
|
1670 |
+
self.lm_head = new_embeddings
|
1671 |
+
|
1672 |
+
def set_decoder(self, decoder):
|
1673 |
+
self.model = decoder
|
1674 |
+
|
1675 |
+
def get_decoder(self):
|
1676 |
+
return self.model
|
1677 |
+
|
1678 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1679 |
+
def forward(
|
1680 |
+
self,
|
1681 |
+
input_ids: torch.LongTensor = None,
|
1682 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1683 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1684 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1685 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1686 |
+
labels: Optional[torch.LongTensor] = None,
|
1687 |
+
use_cache: Optional[bool] = None,
|
1688 |
+
output_attentions: Optional[bool] = None,
|
1689 |
+
output_hidden_states: Optional[bool] = None,
|
1690 |
+
return_dict: Optional[bool] = None,
|
1691 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1692 |
+
num_logits_to_keep: int = 0,
|
1693 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1694 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1695 |
+
output_hidden_states = (
|
1696 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1697 |
+
)
|
1698 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1699 |
+
|
1700 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1701 |
+
outputs = self.model(
|
1702 |
+
input_ids=input_ids,
|
1703 |
+
attention_mask=attention_mask,
|
1704 |
+
position_ids=position_ids,
|
1705 |
+
past_key_values=past_key_values,
|
1706 |
+
inputs_embeds=inputs_embeds,
|
1707 |
+
use_cache=use_cache,
|
1708 |
+
output_attentions=output_attentions,
|
1709 |
+
output_hidden_states=output_hidden_states,
|
1710 |
+
return_dict=return_dict,
|
1711 |
+
cache_position=cache_position,
|
1712 |
+
)
|
1713 |
+
|
1714 |
+
hidden_states = outputs[0]
|
1715 |
+
if self.config.pretraining_tp > 1:
|
1716 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1717 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1718 |
+
logits = torch.cat(logits, dim=-1)
|
1719 |
+
else:
|
1720 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1721 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
1722 |
+
|
1723 |
+
loss = None
|
1724 |
+
if labels is not None:
|
1725 |
+
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
1726 |
+
logits = logits.float()
|
1727 |
+
# Shift so that tokens < n predict n
|
1728 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1729 |
+
shift_labels = labels[..., 1:].contiguous()
|
1730 |
+
# Flatten the tokens
|
1731 |
+
loss_fct = CrossEntropyLoss()
|
1732 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1733 |
+
shift_labels = shift_labels.view(-1)
|
1734 |
+
# Enable model parallelism
|
1735 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1736 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1737 |
+
|
1738 |
+
if not return_dict:
|
1739 |
+
output = (logits,) + outputs[1:]
|
1740 |
+
return (loss,) + output if loss is not None else output
|
1741 |
+
|
1742 |
+
return CausalLMOutputWithPast(
|
1743 |
+
loss=loss,
|
1744 |
+
logits=logits,
|
1745 |
+
past_key_values=outputs.past_key_values,
|
1746 |
+
hidden_states=outputs.hidden_states,
|
1747 |
+
attentions=outputs.attentions,
|
1748 |
+
)
|
1749 |
+
|
1750 |
+
@torch.inference_mode()
|
1751 |
+
def generate_html_tree(self,
|
1752 |
+
tokenizer,
|
1753 |
+
query: List[str],
|
1754 |
+
htmls: List[List[str]],
|
1755 |
+
**kwargs):
|
1756 |
+
max_seq_length = kwargs.pop("max_seq_length", 131072)
|
1757 |
+
def apply_html_tree_template(query, htmls):
|
1758 |
+
template = """**HTML**: ```{input_html}```\n**Question**: **{question}**\n Your task is to identify the most relevant text piece to the given question in the HTML document. This text piece could either be a direct paraphrase to the fact, or a supporting evidence that can be used to infer the fact. The overall length of the text piece should be more than 300 words and less than 500 words. You should provide the path to the text piece in the HTML document. An example for the output is: <html 1><body><div 2><p>Some key information..."""
|
1759 |
+
return template.format(input_html="\n".join(htmls), question=query)
|
1760 |
+
|
1761 |
+
res_html_refs = []
|
1762 |
+
# get the generation probability of tree nodes
|
1763 |
+
for idx, _htmls in enumerate(htmls):
|
1764 |
+
if isinstance(_htmls, str):
|
1765 |
+
_htmls = [_htmls]
|
1766 |
+
else:
|
1767 |
+
# drop htmls that are too long
|
1768 |
+
html_token_lens = [len(tokenizer.encode(html)) for html in _htmls]
|
1769 |
+
total_html_token_len = sum(html_token_lens)
|
1770 |
+
while total_html_token_len > max_seq_length - 2048:
|
1771 |
+
if len(_htmls) == 1:
|
1772 |
+
break
|
1773 |
+
max_length_idx = html_token_lens.index(max(html_token_lens))
|
1774 |
+
html_token_lens.pop(max_length_idx)
|
1775 |
+
_htmls.pop(max_length_idx)
|
1776 |
+
total_html_token_len = sum(html_token_lens)
|
1777 |
+
|
1778 |
+
model_input = apply_html_tree_template(query, _htmls)
|
1779 |
+
|
1780 |
+
inputs = tokenizer.apply_chat_template([{"role": "user", "content": model_input}], add_special_tokens=True,
|
1781 |
+
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
1782 |
+
return_dict=True)
|
1783 |
+
|
1784 |
+
# merge htmls to a single html
|
1785 |
+
soup = bs4.BeautifulSoup("", 'html.parser')
|
1786 |
+
for html in _htmls:
|
1787 |
+
soup.append(bs4.BeautifulSoup(html, 'html.parser'))
|
1788 |
+
|
1789 |
+
token_id_paths = []
|
1790 |
+
html_chunk_paths = split_tree(soup, max_node_words=self.max_node_words)
|
1791 |
+
is_leaf = [p[2] for p in html_chunk_paths]
|
1792 |
+
html_chunk_paths = [p[1] for p in html_chunk_paths]
|
1793 |
+
|
1794 |
+
for path in html_chunk_paths:
|
1795 |
+
path_str = "<" + "><".join(path) + ">"
|
1796 |
+
token_ids = tokenizer.encode(path_str, add_special_tokens=False)
|
1797 |
+
token_id_paths.append(token_ids)
|
1798 |
+
|
1799 |
+
# construct token_id_tree
|
1800 |
+
root = TokenIdNode(-1)
|
1801 |
+
for path in token_id_paths:
|
1802 |
+
parent = root
|
1803 |
+
# iterate through path
|
1804 |
+
for i, token_id in enumerate(path):
|
1805 |
+
has_child = False
|
1806 |
+
# find existing child
|
1807 |
+
for child in parent.children:
|
1808 |
+
if child.name == token_id:
|
1809 |
+
parent = child
|
1810 |
+
has_child = True
|
1811 |
+
break
|
1812 |
+
if not has_child:
|
1813 |
+
node = TokenIdNode(token_id, parent=parent, input_ids=path[:i + 1])
|
1814 |
+
parent = node
|
1815 |
+
|
1816 |
+
node_queue = [root]
|
1817 |
+
while node_queue:
|
1818 |
+
cur_node = node_queue.pop(0)
|
1819 |
+
children = cur_node.children
|
1820 |
+
if len(children) == 1:
|
1821 |
+
cur_node.children[0].prob = str(np.float32(1.0))
|
1822 |
+
node_queue.append(children[0])
|
1823 |
+
continue
|
1824 |
+
elif len(children) == 0:
|
1825 |
+
continue
|
1826 |
+
# calculate transition probability for each child
|
1827 |
+
force_token_id = [c.name for c in children]
|
1828 |
+
child_input_ids = torch.tensor(cur_node.input_ids, dtype=torch.long).unsqueeze(0)
|
1829 |
+
# concatenate context input id with child input id
|
1830 |
+
child_input_ids = torch.cat([inputs["input_ids"][idx:idx + 1], child_input_ids], dim=1).to(self.device)
|
1831 |
+
model_inputs = {
|
1832 |
+
"input_ids": child_input_ids,
|
1833 |
+
}
|
1834 |
+
outputs = self(
|
1835 |
+
**model_inputs,
|
1836 |
+
return_dict=True,
|
1837 |
+
)
|
1838 |
+
# get the probability of force_token_id
|
1839 |
+
force_token_id = torch.tensor(force_token_id, device=self.device)
|
1840 |
+
probs = torch.gather(outputs.logits[:, 0, :], -1, force_token_id.unsqueeze(0))
|
1841 |
+
# softmax
|
1842 |
+
probs = torch.nn.functional.softmax(probs, dim=-1)
|
1843 |
+
#. linear transformation
|
1844 |
+
# probs = probs / probs.sum()
|
1845 |
+
probs = probs.squeeze(0).detach().to(torch.float32).cpu().numpy()
|
1846 |
+
for i, child in enumerate(children):
|
1847 |
+
child.prob = str(probs[i])
|
1848 |
+
node_queue.append(child)
|
1849 |
+
|
1850 |
+
res_html_refs.append({
|
1851 |
+
"html": str(soup),
|
1852 |
+
"paths": html_chunk_paths,
|
1853 |
+
"is_leaf": is_leaf,
|
1854 |
+
"path_token_ids": token_id_paths,
|
1855 |
+
"node_tree": list(TokenDotExporter(root, nodenamefunc=nodenamefunc))
|
1856 |
+
})
|
1857 |
+
return res_html_refs
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|finetune_right_pad_id|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenization_llama.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
"""Tokenization classes for LLaMA."""
|
22 |
+
|
23 |
+
import os
|
24 |
+
from shutil import copyfile
|
25 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
26 |
+
|
27 |
+
import sentencepiece as spm
|
28 |
+
|
29 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
30 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
31 |
+
from transformers.utils import logging
|
32 |
+
|
33 |
+
|
34 |
+
if TYPE_CHECKING:
|
35 |
+
from transformers.tokenization_utils_base import TextInput
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
40 |
+
|
41 |
+
SPIECE_UNDERLINE = "▁"
|
42 |
+
|
43 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
44 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
45 |
+
|
46 |
+
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
|
47 |
+
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
|
48 |
+
that your responses are socially unbiased and positive in nature.
|
49 |
+
|
50 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
|
51 |
+
correct. If you don't know the answer to a question, please don't share false information.""" # fmt: skip
|
52 |
+
|
53 |
+
|
54 |
+
class LlamaTokenizer(PreTrainedTokenizer):
|
55 |
+
"""
|
56 |
+
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
57 |
+
no padding token in the original model.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
vocab_file (`str`):
|
61 |
+
Path to the vocabulary file.
|
62 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
63 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
64 |
+
token instead.
|
65 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
66 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
67 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
68 |
+
The end of sequence token.
|
69 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
70 |
+
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
71 |
+
attention mechanisms or loss computation.
|
72 |
+
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
|
73 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
74 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
75 |
+
to set:
|
76 |
+
|
77 |
+
- `enable_sampling`: Enable subword regularization.
|
78 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
79 |
+
|
80 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
81 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
82 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
83 |
+
using forward-filtering-and-backward-sampling algorithm.
|
84 |
+
|
85 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
86 |
+
BPE-dropout.
|
87 |
+
|
88 |
+
add_bos_token (`bool`, *optional*, defaults to `True`):
|
89 |
+
Whether or not to add an `bos_token` at the start of sequences.
|
90 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
91 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
92 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
93 |
+
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
94 |
+
extra spaces.
|
95 |
+
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
96 |
+
Whether or not the default system prompt for Llama should be used.
|
97 |
+
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
|
98 |
+
Whether or not to add spaces between special tokens.
|
99 |
+
legacy (`bool`, *optional*):
|
100 |
+
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
|
101 |
+
and #25224 which includes fixes to properly handle tokens that appear after special tokens.
|
102 |
+
Make sure to also set `from_slow` to `True`.
|
103 |
+
A simple example:
|
104 |
+
|
105 |
+
- `legacy=True`:
|
106 |
+
```python
|
107 |
+
>>> from transformers import LlamaTokenizerFast
|
108 |
+
|
109 |
+
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True)
|
110 |
+
>>> tokenizer.encode("Hello <s>.") # 869 is '▁.'
|
111 |
+
[1, 15043, 29871, 1, 869]
|
112 |
+
```
|
113 |
+
- `legacy=False`:
|
114 |
+
```python
|
115 |
+
>>> from transformers import LlamaTokenizerFast
|
116 |
+
|
117 |
+
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True)
|
118 |
+
>>> tokenizer.encode("Hello <s>.") # 29889 is '.'
|
119 |
+
[1, 15043, 29871, 1, 29889]
|
120 |
+
```
|
121 |
+
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
|
122 |
+
add_prefix_space (`bool`, *optional*, defaults to `True`):
|
123 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
124 |
+
other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
|
125 |
+
"""
|
126 |
+
|
127 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
128 |
+
model_input_names = ["input_ids", "attention_mask"]
|
129 |
+
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
vocab_file,
|
133 |
+
unk_token="<unk>",
|
134 |
+
bos_token="<s>",
|
135 |
+
eos_token="</s>",
|
136 |
+
pad_token=None,
|
137 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
138 |
+
add_bos_token=True,
|
139 |
+
add_eos_token=False,
|
140 |
+
clean_up_tokenization_spaces=False,
|
141 |
+
use_default_system_prompt=False,
|
142 |
+
spaces_between_special_tokens=False,
|
143 |
+
legacy=None,
|
144 |
+
add_prefix_space=True,
|
145 |
+
**kwargs,
|
146 |
+
):
|
147 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
148 |
+
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
149 |
+
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
150 |
+
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
|
151 |
+
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
152 |
+
|
153 |
+
if legacy is None:
|
154 |
+
logger.warning_once(
|
155 |
+
f"You are using the default legacy behaviour of the {self.__class__}. This is"
|
156 |
+
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
|
157 |
+
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
|
158 |
+
" means, and thoroughly read the reason why this was added as explained in"
|
159 |
+
" https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file"
|
160 |
+
" you can ignore this message"
|
161 |
+
)
|
162 |
+
legacy = True
|
163 |
+
|
164 |
+
self.legacy = legacy
|
165 |
+
self.vocab_file = vocab_file
|
166 |
+
self.add_bos_token = add_bos_token
|
167 |
+
self.add_eos_token = add_eos_token
|
168 |
+
self.use_default_system_prompt = use_default_system_prompt
|
169 |
+
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
170 |
+
self.add_prefix_space = add_prefix_space
|
171 |
+
|
172 |
+
super().__init__(
|
173 |
+
bos_token=bos_token,
|
174 |
+
eos_token=eos_token,
|
175 |
+
unk_token=unk_token,
|
176 |
+
pad_token=pad_token,
|
177 |
+
add_bos_token=add_bos_token,
|
178 |
+
add_eos_token=add_eos_token,
|
179 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
180 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
181 |
+
use_default_system_prompt=use_default_system_prompt,
|
182 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
183 |
+
legacy=legacy,
|
184 |
+
add_prefix_space=add_prefix_space,
|
185 |
+
**kwargs,
|
186 |
+
)
|
187 |
+
|
188 |
+
@property
|
189 |
+
def unk_token_length(self):
|
190 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
191 |
+
|
192 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
|
193 |
+
def get_spm_processor(self, from_slow=False):
|
194 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
195 |
+
if self.legacy or from_slow: # no dependency on protobuf
|
196 |
+
tokenizer.Load(self.vocab_file)
|
197 |
+
return tokenizer
|
198 |
+
|
199 |
+
with open(self.vocab_file, "rb") as f:
|
200 |
+
sp_model = f.read()
|
201 |
+
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
202 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
203 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
204 |
+
normalizer_spec.add_dummy_prefix = False
|
205 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
206 |
+
sp_model = model.SerializeToString()
|
207 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
208 |
+
return tokenizer
|
209 |
+
|
210 |
+
def __getstate__(self):
|
211 |
+
state = self.__dict__.copy()
|
212 |
+
state["sp_model"] = None
|
213 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
214 |
+
return state
|
215 |
+
|
216 |
+
def __setstate__(self, d):
|
217 |
+
self.__dict__ = d
|
218 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
219 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
220 |
+
|
221 |
+
@property
|
222 |
+
def vocab_size(self):
|
223 |
+
"""Returns vocab size"""
|
224 |
+
return self.sp_model.get_piece_size()
|
225 |
+
|
226 |
+
def get_vocab(self):
|
227 |
+
"""Returns vocab as a dict"""
|
228 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
229 |
+
vocab.update(self.added_tokens_encoder)
|
230 |
+
return vocab
|
231 |
+
|
232 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
|
233 |
+
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
|
234 |
+
"""
|
235 |
+
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
|
236 |
+
first token is special.
|
237 |
+
"""
|
238 |
+
if self.legacy or len(text) == 0:
|
239 |
+
return super().tokenize(text, **kwargs)
|
240 |
+
|
241 |
+
text = text.replace(SPIECE_UNDERLINE, " ")
|
242 |
+
if self.add_prefix_space:
|
243 |
+
text = SPIECE_UNDERLINE + text
|
244 |
+
|
245 |
+
tokens = super().tokenize(text, **kwargs)
|
246 |
+
|
247 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
248 |
+
tokens = tokens[1:]
|
249 |
+
return tokens
|
250 |
+
|
251 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
|
252 |
+
def _tokenize(self, text, **kwargs):
|
253 |
+
"""
|
254 |
+
Returns a tokenized string.
|
255 |
+
|
256 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
257 |
+
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
|
258 |
+
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
|
259 |
+
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
260 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
261 |
+
"""
|
262 |
+
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
|
263 |
+
return self.sp_model.encode(text, out_type=str)
|
264 |
+
|
265 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
266 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
267 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
268 |
+
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
269 |
+
|
270 |
+
def _convert_token_to_id(self, token):
|
271 |
+
"""Converts a token (str) in an id using the vocab."""
|
272 |
+
return self.sp_model.piece_to_id(token)
|
273 |
+
|
274 |
+
def _convert_id_to_token(self, index):
|
275 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
276 |
+
token = self.sp_model.IdToPiece(index)
|
277 |
+
return token
|
278 |
+
|
279 |
+
def convert_tokens_to_string(self, tokens):
|
280 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
281 |
+
# since we manually add the prefix space, we have to remove it when decoding
|
282 |
+
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
|
283 |
+
tokens[0] = tokens[0][1:]
|
284 |
+
|
285 |
+
current_sub_tokens = []
|
286 |
+
out_string = ""
|
287 |
+
prev_is_special = False
|
288 |
+
for i, token in enumerate(tokens):
|
289 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
290 |
+
if token in self.all_special_tokens:
|
291 |
+
if not prev_is_special and i != 0 and self.legacy:
|
292 |
+
out_string += " "
|
293 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
294 |
+
prev_is_special = True
|
295 |
+
current_sub_tokens = []
|
296 |
+
else:
|
297 |
+
if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE):
|
298 |
+
out_string += " "
|
299 |
+
current_sub_tokens.append(token)
|
300 |
+
prev_is_special = False
|
301 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
302 |
+
return out_string
|
303 |
+
|
304 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
305 |
+
"""
|
306 |
+
Save the vocabulary and special tokens file to a directory.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
save_directory (`str`):
|
310 |
+
The directory in which to save the vocabulary.
|
311 |
+
|
312 |
+
Returns:
|
313 |
+
`Tuple(str)`: Paths to the files saved.
|
314 |
+
"""
|
315 |
+
if not os.path.isdir(save_directory):
|
316 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
317 |
+
return
|
318 |
+
out_vocab_file = os.path.join(
|
319 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
320 |
+
)
|
321 |
+
|
322 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
323 |
+
copyfile(self.vocab_file, out_vocab_file)
|
324 |
+
elif not os.path.isfile(self.vocab_file):
|
325 |
+
with open(out_vocab_file, "wb") as fi:
|
326 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
327 |
+
fi.write(content_spiece_model)
|
328 |
+
|
329 |
+
return (out_vocab_file,)
|
330 |
+
|
331 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
332 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
333 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
334 |
+
|
335 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
336 |
+
|
337 |
+
if token_ids_1 is not None:
|
338 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
339 |
+
|
340 |
+
return output
|
341 |
+
|
342 |
+
def get_special_tokens_mask(
|
343 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
344 |
+
) -> List[int]:
|
345 |
+
"""
|
346 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
347 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
348 |
+
|
349 |
+
Args:
|
350 |
+
token_ids_0 (`List[int]`):
|
351 |
+
List of IDs.
|
352 |
+
token_ids_1 (`List[int]`, *optional*):
|
353 |
+
Optional second list of IDs for sequence pairs.
|
354 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
355 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
356 |
+
|
357 |
+
Returns:
|
358 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
359 |
+
"""
|
360 |
+
if already_has_special_tokens:
|
361 |
+
return super().get_special_tokens_mask(
|
362 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
363 |
+
)
|
364 |
+
|
365 |
+
bos_token_id = [1] if self.add_bos_token else []
|
366 |
+
eos_token_id = [1] if self.add_eos_token else []
|
367 |
+
|
368 |
+
if token_ids_1 is None:
|
369 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
370 |
+
return (
|
371 |
+
bos_token_id
|
372 |
+
+ ([0] * len(token_ids_0))
|
373 |
+
+ eos_token_id
|
374 |
+
+ bos_token_id
|
375 |
+
+ ([0] * len(token_ids_1))
|
376 |
+
+ eos_token_id
|
377 |
+
)
|
378 |
+
|
379 |
+
def create_token_type_ids_from_sequences(
|
380 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
381 |
+
) -> List[int]:
|
382 |
+
"""
|
383 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
384 |
+
sequence pair mask has the following format:
|
385 |
+
|
386 |
+
```
|
387 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
388 |
+
| first sequence | second sequence |
|
389 |
+
```
|
390 |
+
|
391 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
392 |
+
|
393 |
+
Args:
|
394 |
+
token_ids_0 (`List[int]`):
|
395 |
+
List of ids.
|
396 |
+
token_ids_1 (`List[int]`, *optional*):
|
397 |
+
Optional second list of IDs for sequence pairs.
|
398 |
+
|
399 |
+
Returns:
|
400 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
401 |
+
"""
|
402 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
403 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
404 |
+
|
405 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
406 |
+
|
407 |
+
if token_ids_1 is not None:
|
408 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
409 |
+
|
410 |
+
return output
|
tokenization_llama_fast.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import os
|
16 |
+
from shutil import copyfile
|
17 |
+
from typing import Optional, Tuple
|
18 |
+
|
19 |
+
from tokenizers import processors
|
20 |
+
|
21 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
22 |
+
from transformers.utils import is_sentencepiece_available, logging
|
23 |
+
from transformers.utils.versions import require_version
|
24 |
+
|
25 |
+
|
26 |
+
require_version("tokenizers>=0.13.3")
|
27 |
+
|
28 |
+
if is_sentencepiece_available():
|
29 |
+
from .tokenization_llama import LlamaTokenizer
|
30 |
+
else:
|
31 |
+
LlamaTokenizer = None
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
|
35 |
+
|
36 |
+
B_INST, E_INST = "[INST]", "[/INST]"
|
37 |
+
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
38 |
+
|
39 |
+
# fmt: off
|
40 |
+
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
|
41 |
+
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
|
42 |
+
that your responses are socially unbiased and positive in nature.
|
43 |
+
|
44 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
|
45 |
+
correct. If you don't know the answer to a question, please don't share false information."""
|
46 |
+
# fmt: on
|
47 |
+
|
48 |
+
|
49 |
+
class LlamaTokenizerFast(PreTrainedTokenizerFast):
|
50 |
+
"""
|
51 |
+
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding.
|
52 |
+
|
53 |
+
This uses notably ByteFallback and no normalization.
|
54 |
+
|
55 |
+
```python
|
56 |
+
>>> from transformers import LlamaTokenizerFast
|
57 |
+
|
58 |
+
>>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
|
59 |
+
>>> tokenizer.encode("Hello this is a test")
|
60 |
+
[1, 15043, 445, 338, 263, 1243]
|
61 |
+
```
|
62 |
+
|
63 |
+
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
|
64 |
+
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
|
65 |
+
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
|
66 |
+
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
|
67 |
+
|
68 |
+
|
69 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
70 |
+
refer to this superclass for more information regarding those methods.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
vocab_file (`str`, *optional*):
|
74 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
|
75 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
76 |
+
tokenizer_file (`str`, *optional*):
|
77 |
+
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
78 |
+
contains everything needed to load the tokenizer.
|
79 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
81 |
+
extra spaces.
|
82 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
83 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
84 |
+
token instead.
|
85 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
86 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
87 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
88 |
+
The end of sequence token.
|
89 |
+
add_bos_token (`bool`, *optional*, defaults to `True`):
|
90 |
+
Whether or not to add an `bos_token` at the start of sequences.
|
91 |
+
add_eos_token (`bool`, *optional*, defaults to `False`):
|
92 |
+
Whether or not to add an `eos_token` at the end of sequences.
|
93 |
+
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
94 |
+
Whether or not the default system prompt for Llama should be used
|
95 |
+
legacy (`bool`, *optional*):
|
96 |
+
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
|
97 |
+
and #25224 which includes fixes to properly handle tokens that appear after special tokens.
|
98 |
+
Make sure to also set `from_slow` to `True`.
|
99 |
+
A simple example:
|
100 |
+
|
101 |
+
- `legacy=True`:
|
102 |
+
```python
|
103 |
+
>>> from transformers import LlamaTokenizerFast
|
104 |
+
|
105 |
+
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=True, from_slow=True)
|
106 |
+
>>> tokenizer.encode("Hello <s>.") # 869 is '▁.'
|
107 |
+
[1, 15043, 29871, 1, 869]
|
108 |
+
```
|
109 |
+
- `legacy=False`:
|
110 |
+
```python
|
111 |
+
>>> from transformers import LlamaTokenizerFast
|
112 |
+
|
113 |
+
>>> tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b", legacy=False, from_slow=True)
|
114 |
+
>>> tokenizer.encode("Hello <s>.") # 29889 is '.'
|
115 |
+
[1, 15043, 29871, 1, 29889]
|
116 |
+
```
|
117 |
+
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
|
118 |
+
add_prefix_space (`bool`, *optional*):
|
119 |
+
Whether or not the tokenizer should automatically add a prefix space
|
120 |
+
"""
|
121 |
+
|
122 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
123 |
+
slow_tokenizer_class = LlamaTokenizer
|
124 |
+
padding_side = "left"
|
125 |
+
model_input_names = ["input_ids", "attention_mask"]
|
126 |
+
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
vocab_file=None,
|
130 |
+
tokenizer_file=None,
|
131 |
+
clean_up_tokenization_spaces=False,
|
132 |
+
unk_token="<unk>",
|
133 |
+
bos_token="<s>",
|
134 |
+
eos_token="</s>",
|
135 |
+
add_bos_token=True,
|
136 |
+
add_eos_token=False,
|
137 |
+
use_default_system_prompt=False,
|
138 |
+
legacy=None,
|
139 |
+
add_prefix_space=None,
|
140 |
+
**kwargs,
|
141 |
+
):
|
142 |
+
if legacy is None:
|
143 |
+
logger.warning_once(
|
144 |
+
f"You are using the default legacy behaviour of the {self.__class__}. This is"
|
145 |
+
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
|
146 |
+
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
|
147 |
+
" means, and thoroughly read the reason why this was added as explained in"
|
148 |
+
" https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file"
|
149 |
+
" you can ignore this message."
|
150 |
+
)
|
151 |
+
legacy = True
|
152 |
+
self.legacy = legacy
|
153 |
+
|
154 |
+
if add_prefix_space is not None:
|
155 |
+
kwargs["from_slow"] = True
|
156 |
+
|
157 |
+
super().__init__(
|
158 |
+
vocab_file=vocab_file,
|
159 |
+
tokenizer_file=tokenizer_file,
|
160 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
161 |
+
unk_token=unk_token,
|
162 |
+
bos_token=bos_token,
|
163 |
+
eos_token=eos_token,
|
164 |
+
add_bos_token=add_bos_token,
|
165 |
+
add_eos_token=add_eos_token,
|
166 |
+
use_default_system_prompt=use_default_system_prompt,
|
167 |
+
add_prefix_space=add_prefix_space,
|
168 |
+
legacy=legacy,
|
169 |
+
**kwargs,
|
170 |
+
)
|
171 |
+
self._add_bos_token = add_bos_token
|
172 |
+
self._add_eos_token = add_eos_token
|
173 |
+
self.update_post_processor()
|
174 |
+
self.use_default_system_prompt = use_default_system_prompt
|
175 |
+
self.vocab_file = vocab_file
|
176 |
+
|
177 |
+
@property
|
178 |
+
def can_save_slow_tokenizer(self) -> bool:
|
179 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
180 |
+
|
181 |
+
def update_post_processor(self):
|
182 |
+
"""
|
183 |
+
Updates the underlying post processor with the current `bos_token` and `eos_token`.
|
184 |
+
"""
|
185 |
+
bos = self.bos_token
|
186 |
+
bos_token_id = self.bos_token_id
|
187 |
+
if bos is None and self.add_bos_token:
|
188 |
+
raise ValueError("add_bos_token = True but bos_token = None")
|
189 |
+
|
190 |
+
eos = self.eos_token
|
191 |
+
eos_token_id = self.eos_token_id
|
192 |
+
if eos is None and self.add_eos_token:
|
193 |
+
raise ValueError("add_eos_token = True but eos_token = None")
|
194 |
+
|
195 |
+
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
|
196 |
+
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
|
197 |
+
|
198 |
+
special_tokens = []
|
199 |
+
if self.add_bos_token:
|
200 |
+
special_tokens.append((bos, bos_token_id))
|
201 |
+
if self.add_eos_token:
|
202 |
+
special_tokens.append((eos, eos_token_id))
|
203 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
204 |
+
single=single, pair=pair, special_tokens=special_tokens
|
205 |
+
)
|
206 |
+
|
207 |
+
@property
|
208 |
+
def add_eos_token(self):
|
209 |
+
return self._add_eos_token
|
210 |
+
|
211 |
+
@property
|
212 |
+
def add_bos_token(self):
|
213 |
+
return self._add_bos_token
|
214 |
+
|
215 |
+
@add_eos_token.setter
|
216 |
+
def add_eos_token(self, value):
|
217 |
+
self._add_eos_token = value
|
218 |
+
self.update_post_processor()
|
219 |
+
|
220 |
+
@add_bos_token.setter
|
221 |
+
def add_bos_token(self, value):
|
222 |
+
self._add_bos_token = value
|
223 |
+
self.update_post_processor()
|
224 |
+
|
225 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
226 |
+
if not self.can_save_slow_tokenizer:
|
227 |
+
raise ValueError(
|
228 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
229 |
+
"tokenizer."
|
230 |
+
)
|
231 |
+
|
232 |
+
if not os.path.isdir(save_directory):
|
233 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
234 |
+
return
|
235 |
+
out_vocab_file = os.path.join(
|
236 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
237 |
+
)
|
238 |
+
|
239 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
240 |
+
copyfile(self.vocab_file, out_vocab_file)
|
241 |
+
|
242 |
+
return (out_vocab_file,)
|
243 |
+
|
244 |
+
# TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers
|
245 |
+
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
|
246 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
247 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
248 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
249 |
+
|
250 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
251 |
+
|
252 |
+
if token_ids_1 is not None:
|
253 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
254 |
+
|
255 |
+
return output
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
|
3 |
+
size 17209920
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|eot_id|>",
|
2056 |
+
"pad_token": "<|finetune_right_pad_id|>",
|
2057 |
+
"model_input_names": [
|
2058 |
+
"input_ids",
|
2059 |
+
"attention_mask"
|
2060 |
+
],
|
2061 |
+
"model_max_length": 131072,
|
2062 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2063 |
+
}
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|