Upload hparams.yaml with huggingface_hub
Browse files- hparams.yaml +40 -0
hparams.yaml
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
activations: Tanh
|
2 |
+
batch_size: 4
|
3 |
+
class_identifier: unified_metric
|
4 |
+
cross_entropy_weights: null
|
5 |
+
dropout: 0.1
|
6 |
+
encoder_learning_rate: 1.0e-06
|
7 |
+
encoder_model: XLM-RoBERTa
|
8 |
+
error_labels:
|
9 |
+
- minor
|
10 |
+
- major
|
11 |
+
final_activation: null
|
12 |
+
hidden_sizes:
|
13 |
+
- 3072
|
14 |
+
- 1024
|
15 |
+
input_segments:
|
16 |
+
- mt
|
17 |
+
- src
|
18 |
+
- ref
|
19 |
+
keep_embeddings_frozen: true
|
20 |
+
layer: mix
|
21 |
+
layer_norm: false
|
22 |
+
layer_transformation: sparsemax
|
23 |
+
layerwise_decay: 0.95
|
24 |
+
learning_rate: 1.5e-05
|
25 |
+
load_pretrained_weights: true
|
26 |
+
loss: mse
|
27 |
+
loss_lambda: 0.65
|
28 |
+
nr_frozen_epochs: 0.3
|
29 |
+
optimizer: AdamW
|
30 |
+
pool: avg
|
31 |
+
pretrained_model: microsoft/infoxlm-large
|
32 |
+
sent_layer: mix
|
33 |
+
train_data:
|
34 |
+
- data/wmt-human-eval/reward_dataset.csv
|
35 |
+
validation_data: 0.1
|
36 |
+
warmup_steps: 0
|
37 |
+
word_layer: 24
|
38 |
+
word_level_training: false
|
39 |
+
min_zscore: -1.8359497445108464
|
40 |
+
max_zscore: 0.8327298628095561
|