Delete handler.py
Browse files- handler.py +0 -53
handler.py
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
from typing import Any, Dict
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
5 |
-
|
6 |
-
|
7 |
-
class EndpointHandler:
|
8 |
-
def __init__(self, path=""):
|
9 |
-
# load model and processor from path
|
10 |
-
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
11 |
-
# try:
|
12 |
-
# config = AutoConfig.from_pretrained(path)
|
13 |
-
model = AutoModelForCausalLM.from_pretrained(
|
14 |
-
path,
|
15 |
-
# return_dict=True,
|
16 |
-
# load_in_8bit=True,
|
17 |
-
device_map="auto",
|
18 |
-
torch_dtype=torch.float16,
|
19 |
-
trust_remote_code=True,
|
20 |
-
)
|
21 |
-
# model.resize_token_embeddings(len(self.tokenizer))
|
22 |
-
# model = PeftModel.from_pretrained(model, path)
|
23 |
-
# except Exception:
|
24 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
25 |
-
# path, device_map="auto", load_in_8bit=True, torch_dtype=torch.float16, trust_remote_code=True
|
26 |
-
# )
|
27 |
-
self.model = model
|
28 |
-
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
-
|
30 |
-
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
31 |
-
# process input
|
32 |
-
inputs = data.pop("inputs", data)
|
33 |
-
parameters = data.pop("parameters", None)
|
34 |
-
|
35 |
-
messages=[{ 'role': 'user', 'content': inputs}]
|
36 |
-
inputs = self.tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(self.device)
|
37 |
-
|
38 |
-
# preprocess
|
39 |
-
# inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device)
|
40 |
-
|
41 |
-
# pass inputs with all kwargs in data
|
42 |
-
if parameters is not None:
|
43 |
-
outputs = self.model.generate(inputs, max_new_tokens=880, num_return_sequences=1, eos_token_id=self.tokenizer.eos_token_id, **parameters)
|
44 |
-
else:
|
45 |
-
outputs = self.model.generate(inputs, max_new_tokens=880, num_return_sequences=1, eos_token_id=self.tokenizer.eos_token_id)
|
46 |
-
|
47 |
-
# postprocess the prediction
|
48 |
-
prediction = self.tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
49 |
-
|
50 |
-
return [{"generated_text": prediction}]
|
51 |
-
|
52 |
-
# outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
53 |
-
# print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|