Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: microsoft/Phi-3-mini-128k-instruct
bf16: auto
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - 3dc6a1e406533bf7_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/3dc6a1e406533bf7_train_data.json
  type:
    field_input: description
    field_instruction: edit_goal
    field_output: edit_type
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 1
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: 0x1202/3d29515b-9576-425b-bd80-02e3d46fce7e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/3dc6a1e406533bf7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: null
wandb_mode: online
wandb_name: 3d29515b-9576-425b-bd80-02e3d46fce7e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3d29515b-9576-425b-bd80-02e3d46fce7e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

3d29515b-9576-425b-bd80-02e3d46fce7e

This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2168

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
40.3561 0.0017 1 10.0834
1.7608 0.0436 25 0.4530
2.1705 0.0872 50 0.4450
1.9575 0.1308 75 0.3364
1.7024 0.1744 100 0.3759
1.3623 0.2180 125 0.3000
1.5735 0.2616 150 0.3069
0.8899 0.3051 175 0.2278
1.4769 0.3487 200 0.2168

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
59
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for 0x1202/3d29515b-9576-425b-bd80-02e3d46fce7e

Adapter
(197)
this model