Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/gemma-2-9b-it
bf16: auto
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - 5499525b23a19a9a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5499525b23a19a9a_train_data.json
  type:
    field_instruction: question
    field_output: article
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 1
eval_batch_size: 1
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: true
hub_model_id: 0x1202/56c9c2c3-d834-4a45-9821-f8d284ca298a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GB
max_steps: 200
micro_batch_size: 1
mlflow_experiment_name: /tmp/5499525b23a19a9a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: null
wandb_mode: online
wandb_name: 56c9c2c3-d834-4a45-9821-f8d284ca298a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 56c9c2c3-d834-4a45-9821-f8d284ca298a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

56c9c2c3-d834-4a45-9821-f8d284ca298a

This model is a fine-tuned version of unsloth/gemma-2-9b-it on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
2.7152 0.0073 1 2.7399
2.2003 0.1835 25 2.0464
1.2361 0.3671 50 1.2670
0.5787 0.5506 75 0.3804
0.0628 0.7341 100 0.1004
0.022 0.9176 125 0.0153
0.0085 1.1012 150 0.0095
0.0074 1.2847 175 0.0082
0.009 1.4682 200 0.0081

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
19
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for 0x1202/56c9c2c3-d834-4a45-9821-f8d284ca298a

Adapter
(75)
this model