Model description 1
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] |
verbose | False |
transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])]) |
model | DecisionTreeClassifier(max_depth=4) |
transformation__n_jobs | |
transformation__remainder | drop |
transformation__sparse_threshold | 0.3 |
transformation__transformer_weights | |
transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] |
transformation__verbose | False |
transformation__verbose_feature_names_out | True |
transformation__loading_missing_value_imputer | SimpleImputer() |
transformation__numerical_missing_value_imputer | SimpleImputer() |
transformation__attribute_0_encoder | OneHotEncoder() |
transformation__attribute_1_encoder | OneHotEncoder() |
transformation__product_code_encoder | OneHotEncoder() |
transformation__loading_missing_value_imputer__add_indicator | False |
transformation__loading_missing_value_imputer__copy | True |
transformation__loading_missing_value_imputer__fill_value | |
transformation__loading_missing_value_imputer__missing_values | nan |
transformation__loading_missing_value_imputer__strategy | mean |
transformation__loading_missing_value_imputer__verbose | 0 |
transformation__numerical_missing_value_imputer__add_indicator | False |
transformation__numerical_missing_value_imputer__copy | True |
transformation__numerical_missing_value_imputer__fill_value | |
transformation__numerical_missing_value_imputer__missing_values | nan |
transformation__numerical_missing_value_imputer__strategy | mean |
transformation__numerical_missing_value_imputer__verbose | 0 |
transformation__attribute_0_encoder__categories | auto |
transformation__attribute_0_encoder__drop | |
transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> |
transformation__attribute_0_encoder__handle_unknown | error |
transformation__attribute_0_encoder__sparse | True |
transformation__attribute_1_encoder__categories | auto |
transformation__attribute_1_encoder__drop | |
transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> |
transformation__attribute_1_encoder__handle_unknown | error |
transformation__attribute_1_encoder__sparse | True |
transformation__product_code_encoder__categories | auto |
transformation__product_code_encoder__drop | |
transformation__product_code_encoder__dtype | <class 'numpy.float64'> |
transformation__product_code_encoder__handle_unknown | error |
transformation__product_code_encoder__sparse | True |
model__ccp_alpha | 0.0 |
model__class_weight | |
model__criterion | gini |
model__max_depth | 4 |
model__max_features | |
model__max_leaf_nodes | |
model__min_impurity_decrease | 0.0 |
model__min_samples_leaf | 1 |
model__min_samples_split | 2 |
model__min_weight_fraction_leaf | 0.0 |
model__random_state | |
model__splitter | best |
Model Plot
The model plot is below.
Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('transformation',ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(),['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3','measurement_4','measurement_5','measurement_6','measurement_7','measurement_8','measurement_9','measurement_10','measurement_11','measurement_12','measurement_13','measurement_14','measurement_15','measurement_16','measurement_17']),('attribute_0_encoder',OneHotEncoder(),['attribute_0']),('attribute_1_encoder',OneHotEncoder(),['attribute_1']),('product_code_encoder',OneHotEncoder(),['product_code'])])),('model', DecisionTreeClassifier(max_depth=4))])
ColumnTransformer(transformers=[('loading_missing_value_imputer',SimpleImputer(), ['loading']),('numerical_missing_value_imputer',SimpleImputer(),['loading', 'measurement_3', 'measurement_4','measurement_5', 'measurement_6','measurement_7', 'measurement_8','measurement_9', 'measurement_10','measurement_11', 'measurement_12','measurement_13', 'measurement_14','measurement_15', 'measurement_16','measurement_17']),('attribute_0_encoder', OneHotEncoder(),['attribute_0']),('attribute_1_encoder', OneHotEncoder(),['attribute_1']),('product_code_encoder', OneHotEncoder(),['product_code'])])
['loading']
SimpleImputer()
['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']
SimpleImputer()
['attribute_0']
OneHotEncoder()
['attribute_1']
OneHotEncoder()
['product_code']
OneHotEncoder()
DecisionTreeClassifier(max_depth=4)
Evaluation Results
You can find the details about evaluation process and the evaluation results.
Metric | Value |
---|
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
# h1
tjos osmda
Model 2 Description (Logistic)
license: mit
Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
C | 1.0 |
class_weight | |
dual | False |
fit_intercept | True |
intercept_scaling | 1 |
l1_ratio | |
max_iter | 100 |
multi_class | auto |
n_jobs | |
penalty | l2 |
random_state | 0 |
solver | liblinear |
tol | 0.0001 |
verbose | 0 |
warm_start | False |
Model Plot
The model plot is below.
LogisticRegression(random_state=0, solver='liblinear')Please rerun this cell to show the HTML repr or trust the notebook.
LogisticRegression(random_state=0, solver='liblinear')
Evaluation Results
You can find the details about evaluation process and the evaluation results.
Metric | Value |
---|---|
accuracy | 0.96 |
f1 score | 0.96 |
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]