|
--- |
|
library_name: transformers |
|
license: mit |
|
language: |
|
- vi |
|
- en |
|
- zh |
|
base_model: |
|
- OpenGVLab/InternVL2_5-1B |
|
pipeline_tag: image-text-to-text |
|
--- |
|
|
|
<div align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/-G297bBqMzYvTbD6_Bkd9.png" width="500"/> |
|
</div> |
|
|
|
# Vintern-1B-v3.5 ❄️ |
|
We introduce **Vintern-1B-v3.5**, the latest version in the Vintern series, offering significant improvements over v2 across all evaluation benchmarks. This model has been fine-tuned from **InternVL2.5-1B**, which already good in Vietnamese 🇻🇳 tasks because it used [Viet-ShareGPT-4o-Text-VQA](https://huggingface.co/datasets/5CD-AI/Viet-ShareGPT-4o-Text-VQA) data during its fine-tuning process by the InternVL 2.5 [1] team. |
|
|
|
<div align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/a1V1DA1o4Gf_MJblWTz-L.png" width="500"/> |
|
</div> |
|
<div align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/36jb5bgyYCoVKx3NE8Iuv.png" width="500"/> |
|
</div> |
|
|
|
|
|
To further enhance its performance in Vietnamese while maintaining good capabilities on existing English datasets, **Vintern-1B-v3.5** has been fine-tuned using a vast amount of Vietnamese-specific data. This results in a model that is exceptionally powerful in text recognition, OCR, and understanding Vietnam-specific documents. |
|
|
|
# Highlights 🌟 |
|
|
|
- **Top Quality for Vietnamese Texts** |
|
Vintern-1B-v3.5 is one of the best models in its class (1B parameters) for understanding and processing Vietnamese documents. |
|
|
|
- **Better Extraction and Understanding** |
|
The model is great at handling invoices, legal texts, handwriting, and tables. |
|
|
|
- **Improved Prompt Understanding** |
|
It can understand more complex prompts compared to v2, making it easier to work with. |
|
|
|
- **Runs on Affordable Hardware** |
|
You can run the model on Google Colab with a T4 GPU, making it easy to use without expensive devices. |
|
|
|
- **Easy to Fine-tune** |
|
The model can be customized for specific tasks with minimal effort. |
|
|
|
[**🤗 HF Demo 🤗**](https://huggingface.co/spaces/khang119966/Vintern-1B-v3.5-Demo) |
|
|
|
## Benchmarks 📈 |
|
|
|
<div align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/D5MkUZqhOkXxZUrTT7jRA.png" width="400"/> |
|
</div> |
|
|
|
<div align="center"> |
|
|
|
| Benchmark | InternVL2_5 1B | Vintern-1B-v2 | Vintern-1B-v3.5 | |
|
|:-------------:|:--------------:|:-------------:|:---------------:| |
|
| vi-MTVQA | 24.8 | 37.4 | 41.9 | |
|
| DocVQAtest | 84.8 | 72.5 | 78.8 | |
|
| InfoVQAtest | 56.0 | 38.9 | 46.4 | |
|
| TextVQAval | 72.0 | 64.0 | 68.2 | |
|
| ChartQAtest | 75.9 | 34.1 | 60.0 | |
|
| OCRBench | 785 | 628 | 706 | |
|
|
|
</div> |
|
|
|
## Examples |
|
|
|
|
|
<div style="display: flex; justify-content: center; align-items: center;"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/1yos0APs6laTCAGhUbN9n.png" width="300" style="margin-right: 10px;"/> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/L5n35_3sz_Wp9fo0C7snq.png" width="300"/> |
|
</div> |
|
|
|
<div style="display: flex; justify-content: center; align-items: center;"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/u4huu2pWrZpYxPT1Fb-iW.png" width="300" style="margin-right: 10px;"/> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/N_tT8gSLayhrfrVTMCeT9.png" width="400"/> |
|
</div> |
|
|
|
<div style="display: flex; justify-content: center; align-items: center;"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/wUM70ifQSpdbO_dLH1TLO.png" width="300" style="margin-right: 10px;"/> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/yxWlGKMP7458UbtIzosUK.png" width="300"/> |
|
</div> |
|
|
|
<!-- <div style="display: flex; justify-content: center; align-items: center;"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/SH7-fvyZok9Kqm1XoD4E0.png" width="200" style="margin-right: 10px;"/> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/6gyL4ymSWyuHwfy9dVVju.png" width="500"/> |
|
</div> |
|
--> |
|
<div style="display: flex; justify-content: center; align-items: center;"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/s4j3m7iUqj9LUVtHvdU2x.png" width="300" style="margin-right: 10px;"/> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/6336b5c831efcb5647f00170/OD6igRwEmnKt92wy4dCzx.png" width="300"/> |
|
</div> |
|
|
|
|
|
## Quickstart |
|
|
|
Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents. |
|
To run inference using the model, follow the steps outlined in our Colab inference notebook |
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ZD1oB56PF0lF66RCuTVJYLTEV0tM3CFf?usp=sharing) |
|
|
|
```python |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
# from decord import VideoReader, cpu |
|
from PIL import Image |
|
from torchvision.transforms.functional import InterpolationMode |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
def build_transform(input_size): |
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
transform = T.Compose([ |
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(mean=MEAN, std=STD) |
|
]) |
|
return transform |
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
best_ratio_diff = float('inf') |
|
best_ratio = (1, 1) |
|
area = width * height |
|
for ratio in target_ratios: |
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
if ratio_diff < best_ratio_diff: |
|
best_ratio_diff = ratio_diff |
|
best_ratio = ratio |
|
elif ratio_diff == best_ratio_diff: |
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
best_ratio = ratio |
|
return best_ratio |
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
orig_width, orig_height = image.size |
|
aspect_ratio = orig_width / orig_height |
|
|
|
# calculate the existing image aspect ratio |
|
target_ratios = set( |
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
i * j <= max_num and i * j >= min_num) |
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
# find the closest aspect ratio to the target |
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
# calculate the target width and height |
|
target_width = image_size * target_aspect_ratio[0] |
|
target_height = image_size * target_aspect_ratio[1] |
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
# resize the image |
|
resized_img = image.resize((target_width, target_height)) |
|
processed_images = [] |
|
for i in range(blocks): |
|
box = ( |
|
(i % (target_width // image_size)) * image_size, |
|
(i // (target_width // image_size)) * image_size, |
|
((i % (target_width // image_size)) + 1) * image_size, |
|
((i // (target_width // image_size)) + 1) * image_size |
|
) |
|
# split the image |
|
split_img = resized_img.crop(box) |
|
processed_images.append(split_img) |
|
assert len(processed_images) == blocks |
|
if use_thumbnail and len(processed_images) != 1: |
|
thumbnail_img = image.resize((image_size, image_size)) |
|
processed_images.append(thumbnail_img) |
|
return processed_images |
|
|
|
def load_image(image_file, input_size=448, max_num=12): |
|
image = Image.open(image_file).convert('RGB') |
|
transform = build_transform(input_size=input_size) |
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
pixel_values = [transform(image) for image in images] |
|
pixel_values = torch.stack(pixel_values) |
|
return pixel_values |
|
|
|
model = AutoModel.from_pretrained( |
|
"5CD-AI/Vintern-1B-v3_5", |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
use_flash_attn=False, |
|
).eval().cuda() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Vintern-1B-v3_5", trust_remote_code=True, use_fast=False) |
|
|
|
test_image = 'test-image.jpg' |
|
|
|
pixel_values = load_image(test_image, max_num=6).to(torch.bfloat16).cuda() |
|
generation_config = dict(max_new_tokens= 1024, do_sample=False, num_beams = 3, repetition_penalty=2.5) |
|
|
|
question = '<image>\nTrích xuất thông tin chính trong ảnh và trả về dạng markdown.' |
|
|
|
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) |
|
print(f'User: {question}\nAssistant: {response}') |
|
|
|
#question = "Câu hỏi khác ......" |
|
#response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) |
|
#print(f'User: {question}\nAssistant: {response}') |
|
``` |
|
|
|
## Citation |
|
|
|
``` |
|
@misc{doan2024vintern1befficientmultimodallarge, |
|
title={Vintern-1B: An Efficient Multimodal Large Language Model for Vietnamese}, |
|
author={Khang T. Doan and Bao G. Huynh and Dung T. Hoang and Thuc D. Pham and Nhat H. Pham and Quan T. M. Nguyen and Bang Q. Vo and Suong N. Hoang}, |
|
year={2024}, |
|
eprint={2408.12480}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG}, |
|
url={https://arxiv.org/abs/2408.12480}, |
|
} |
|
``` |
|
|
|
## Reference |
|
|
|
[1] Z. Chen et al., ‘Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling’, arXiv preprint arXiv:2412. 05271, 2024. |