chenpengfei's picture
Update README.md
6cddc41
metadata
license: apache-2.0
language: zh
tags:
  - Token Classification
metrics:
  - precision
  - recall
  - f1
  - accuracy

Model description

This model is a fine-tuned version of macbert for the purpose of spell checking in medical application scenarios. We fine-tuned macbert Chinese base version on a 300M dataset including 60K+ authorized medical articles. We proposed to randomly confuse 30% sentences of these articles by adding noise with a either visually or phonologically resembled characters. Consequently, the fine-tuned model can achieve 96% accuracy on our test dataset.

Intended uses & limitations

You can use this model directly with a pipeline for token classification:

>>> from transformers import (AutoModelForTokenClassification, AutoTokenizer)
>>> from transformers import pipeline

>>> hub_model_id = "9pinus/macbert-base-chinese-medical-collation"

>>> model = AutoModelForTokenClassification.from_pretrained(hub_model_id)
>>> tokenizer = AutoTokenizer.from_pretrained(hub_model_id)
>>> classifier = pipeline('ner', model=model, tokenizer=tokenizer)
>>> result = classifier("ε¦‚ζžœη—…ζƒ…θΎƒι‡οΌŒε―ι€‚ε½“ε£ζœη”²θ‚–ε”‘η‰‡γ€ηŽ―ι…―ηΊ’ιœ‰η΄ η‰‡η­‰θ―η‰©θΏ›θ‘ŒζŠ—ζ„ŸζŸ“ι•‡η—›γ€‚")

>>> for item in result:
>>>     if item['entity'] == 1:
>>>         print(item)

{'entity': 1, 'score': 0.58127016, 'index': 14, 'word': 'θ‚–', 'start': 13, 'end': 14}

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.1+cu113
  • Datasets 1.17.0
  • Tokenizers 0.10.3