|
--- |
|
license: mit |
|
base_model: microsoft/layoutlm-base-uncased |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: Aanshula/layoutlm-funsd-tf |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# Aanshula/layoutlm-funsd-tf |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.3182 |
|
- Validation Loss: 0.6807 |
|
- Train Overall Precision: 0.7172 |
|
- Train Overall Recall: 0.7878 |
|
- Train Overall F1: 0.7508 |
|
- Train Overall Accuracy: 0.7864 |
|
- Epoch: 6 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch | |
|
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:| |
|
| 1.7000 | 1.4167 | 0.2445 | 0.2107 | 0.2264 | 0.4831 | 0 | |
|
| 1.1656 | 0.8677 | 0.5749 | 0.6257 | 0.5992 | 0.7251 | 1 | |
|
| 0.7704 | 0.7254 | 0.6356 | 0.7160 | 0.6734 | 0.7637 | 2 | |
|
| 0.5758 | 0.6690 | 0.6851 | 0.7476 | 0.7150 | 0.7857 | 3 | |
|
| 0.4526 | 0.6096 | 0.7085 | 0.7757 | 0.7406 | 0.8046 | 4 | |
|
| 0.3614 | 0.6834 | 0.7118 | 0.7657 | 0.7377 | 0.7872 | 5 | |
|
| 0.3182 | 0.6807 | 0.7172 | 0.7878 | 0.7508 | 0.7864 | 6 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|