phi-1_5-finetuned-news-events
This model is a fine-tuned version of microsoft/phi-1_5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9322
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 800
Training results
How to use
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Abinaya/phi-1_5-finetuned-news-events", trust_remote_code=True, torch_dtype=torch.float32)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5", trust_remote_code=True)
And test
inputs = tokenizer([f"extract events from news.\n News: {test_data[0]['text']}"], return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=512)
text = tokenizer.batch_decode(outputs)[0]
print(text)
Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 4
Model tree for Abinaya/phi-1_5-finetuned-news-events
Base model
microsoft/phi-1_5