Edit model card

segformer-b1-finetuned-segments-graffiti

This model is a fine-tuned version of nvidia/mit-b1 on the Adriatogi/graffiti dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2171
  • Mean Iou: 0.8381
  • Mean Accuracy: 0.9102
  • Overall Accuracy: 0.9168
  • Accuracy Not Graf: 0.9379
  • Accuracy Graf: 0.8826
  • Iou Not Graf: 0.8748
  • Iou Graf: 0.8015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Not Graf Accuracy Graf Iou Not Graf Iou Graf
0.4076 0.42 20 0.5389 0.6053 0.7982 0.7541 0.6139 0.9825 0.6073 0.6033
0.3386 0.83 40 0.2883 0.7962 0.8984 0.8898 0.8625 0.9343 0.8290 0.7634
0.1964 1.25 60 0.2514 0.8061 0.9009 0.8964 0.8819 0.9200 0.8406 0.7716
0.1723 1.67 80 0.2259 0.8269 0.9058 0.9100 0.9235 0.8880 0.8641 0.7898
0.1981 2.08 100 0.2338 0.8119 0.9040 0.8999 0.8869 0.9210 0.8459 0.7778
0.2827 2.5 120 0.2106 0.8251 0.9080 0.9084 0.9095 0.9066 0.8601 0.7902
0.1864 2.92 140 0.2241 0.8232 0.8956 0.9097 0.9546 0.8365 0.8675 0.7790
0.1362 3.33 160 0.2185 0.8257 0.8978 0.9109 0.9525 0.8431 0.8688 0.7826
0.1264 3.75 180 0.2155 0.8237 0.9054 0.9079 0.9156 0.8952 0.8602 0.7871
0.1688 4.17 200 0.2241 0.8206 0.8985 0.9072 0.9346 0.8625 0.8618 0.7795
0.1198 4.58 220 0.2080 0.8331 0.9087 0.9137 0.9296 0.8877 0.8697 0.7965
0.111 5.0 240 0.2033 0.8369 0.9133 0.9154 0.9221 0.9044 0.8710 0.8027
0.2003 5.42 260 0.2214 0.8262 0.9118 0.9084 0.8976 0.9261 0.8586 0.7938
0.1369 5.83 280 0.2044 0.8396 0.9147 0.9170 0.9245 0.9048 0.8734 0.8058
0.1901 6.25 300 0.1968 0.8411 0.9119 0.9185 0.9393 0.8846 0.8771 0.8050
0.1887 6.67 320 0.2098 0.8367 0.9100 0.9159 0.9344 0.8857 0.8731 0.8002
0.0738 7.08 340 0.2205 0.8357 0.9127 0.9147 0.9211 0.9043 0.8699 0.8014
0.1166 7.5 360 0.2274 0.8317 0.9046 0.9135 0.9420 0.8672 0.8709 0.7924
0.1247 7.92 380 0.2225 0.8310 0.9051 0.9130 0.9381 0.8722 0.8698 0.7923
0.1212 8.33 400 0.2230 0.8345 0.9108 0.9143 0.9254 0.8961 0.8699 0.7991
0.0979 8.75 420 0.2226 0.8352 0.9076 0.9153 0.9400 0.8752 0.8730 0.7973
0.0984 9.17 440 0.2189 0.8354 0.9106 0.9149 0.9287 0.8925 0.8712 0.7997
0.1151 9.58 460 0.2185 0.8382 0.9098 0.9170 0.9396 0.8800 0.8751 0.8013
0.0989 10.0 480 0.2171 0.8381 0.9102 0.9168 0.9379 0.8826 0.8748 0.8015

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
25
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Adriatogi/segformer-b1-finetuned-segments-graffiti

Base model

nvidia/mit-b1
Finetuned
(15)
this model