metadata
license: mit
base_model: croissantllm/CroissantCool-v0.2
datasets: asi/wikitext_fr
tags:
- generated_from_trainer
- mteb
metrics:
- accuracy
model-index:
- name: final
results:
- task:
type: Clustering
dataset:
type: lyon-nlp/alloprof
name: MTEB AlloProfClusteringP2P (fra-Latn)
config: fra-Latn
split: test
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
metrics:
- type: v_measure
value: 62.345943052433995
- task:
type: Clustering
dataset:
type: lyon-nlp/alloprof
name: MTEB AlloProfClusteringS2S (fra-Latn)
config: fra-Latn
split: test
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
metrics:
- type: v_measure
value: 25.729454984521148
- task:
type: Reranking
dataset:
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
name: MTEB AlloprofReranking (fra-Latn)
config: fra-Latn
split: test
revision: 65393d0d7a08a10b4e348135e824f385d420b0fd
metrics:
- type: map
value: 26.596323297349183
- type: mrr
value: 26.091629657044162
- task:
type: Retrieval
dataset:
type: lyon-nlp/alloprof
name: MTEB AlloprofRetrieval (fra-Latn)
config: fra-Latn
split: test
revision: fcf295ea64c750f41fadbaa37b9b861558e1bfbd
metrics:
- type: map_at_1
value: 0.345
- type: map_at_10
value: 0.9339999999999999
- type: map_at_100
value: 1.191
- type: map_at_1000
value: 1.3419999999999999
- type: map_at_20
value: 1.02
- type: map_at_3
value: 0.6689999999999999
- type: map_at_5
value: 0.753
- type: mrr_at_1
value: 0.345
- type: mrr_at_10
value: 0.9339999999999999
- type: mrr_at_100
value: 1.191
- type: mrr_at_1000
value: 1.3419999999999999
- type: mrr_at_20
value: 1.02
- type: mrr_at_3
value: 0.6689999999999999
- type: mrr_at_5
value: 0.753
- type: ndcg_at_1
value: 0.345
- type: ndcg_at_10
value: 1.384
- type: ndcg_at_100
value: 3.1510000000000002
- type: ndcg_at_1000
value: 9.014
- type: ndcg_at_20
value: 1.6920000000000002
- type: ndcg_at_3
value: 0.7849999999999999
- type: ndcg_at_5
value: 0.941
- type: precision_at_1
value: 0.345
- type: precision_at_10
value: 0.28900000000000003
- type: precision_at_100
value: 0.124
- type: precision_at_1000
value: 0.063
- type: precision_at_20
value: 0.20500000000000002
- type: precision_at_3
value: 0.374
- type: precision_at_5
value: 0.302
- type: recall_at_1
value: 0.345
- type: recall_at_10
value: 2.8930000000000002
- type: recall_at_100
value: 12.435
- type: recall_at_1000
value: 62.867
- type: recall_at_20
value: 4.102
- type: recall_at_3
value: 1.123
- type: recall_at_5
value: 1.5110000000000001
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (fra-Latn)
config: fra-Latn
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 32.662
- type: f1
value: 32.443152253731846
- task:
type: Retrieval
dataset:
type: maastrichtlawtech/bsard
name: MTEB BSARDRetrieval (fra-Latn)
config: fra-Latn
split: test
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
metrics:
- type: map_at_1
value: 0
- type: map_at_10
value: 0
- type: map_at_100
value: 0.062
- type: map_at_1000
value: 0.077
- type: map_at_20
value: 0
- type: map_at_3
value: 0
- type: map_at_5
value: 0
- type: mrr_at_1
value: 0
- type: mrr_at_10
value: 0
- type: mrr_at_100
value: 0.062
- type: mrr_at_1000
value: 0.077
- type: mrr_at_20
value: 0
- type: mrr_at_3
value: 0
- type: mrr_at_5
value: 0
- type: ndcg_at_1
value: 0
- type: ndcg_at_10
value: 0
- type: ndcg_at_100
value: 0.484
- type: ndcg_at_1000
value: 1.054
- type: ndcg_at_20
value: 0
- type: ndcg_at_3
value: 0
- type: ndcg_at_5
value: 0
- type: precision_at_1
value: 0
- type: precision_at_10
value: 0
- type: precision_at_100
value: 0.027
- type: precision_at_1000
value: 0.008
- type: precision_at_20
value: 0
- type: precision_at_3
value: 0
- type: precision_at_5
value: 0
- type: recall_at_1
value: 0
- type: recall_at_10
value: 0
- type: recall_at_100
value: 2.703
- type: recall_at_1000
value: 7.6579999999999995
- type: recall_at_20
value: 0
- type: recall_at_3
value: 0
- type: recall_at_5
value: 0
- task:
type: Clustering
dataset:
type: lyon-nlp/clustering-hal-s2s
name: MTEB HALClusteringS2S (fra-Latn)
config: fra-Latn
split: test
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
metrics:
- type: v_measure
value: 13.77084465510841
- task:
type: Clustering
dataset:
type: mlsum
name: MTEB MLSUMClusteringP2P (fra-Latn)
config: fra-Latn
split: test
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
metrics:
- type: v_measure
value: 45.43375637260015
- task:
type: Clustering
dataset:
type: mlsum
name: MTEB MLSUMClusteringS2S (fra-Latn)
config: fra-Latn
split: test
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
metrics:
- type: v_measure
value: 45.20564648796975
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (fra-Latn)
config: fra-Latn
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 73.42937676166615
- type: f1
value: 72.65861284500563
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (fra-Latn)
config: fra-Latn
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 58.54368932038836
- type: f1
value: 37.51985447597095
- task:
type: Classification
dataset:
type: mteb/masakhanews
name: MTEB MasakhaNEWSClassification (fra-Latn)
config: fra-Latn
split: test
revision: 18193f187b92da67168c655c9973a165ed9593dd
metrics:
- type: accuracy
value: 75.56872037914692
- type: f1
value: 71.99185345982795
- task:
type: Clustering
dataset:
type: masakhane/masakhanews
name: MTEB MasakhaNEWSClusteringP2P (fra-Latn)
config: fra-Latn
split: test
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
metrics:
- type: v_measure
value: 38.20382948117535
- task:
type: Clustering
dataset:
type: masakhane/masakhanews
name: MTEB MasakhaNEWSClusteringS2S (fra-Latn)
config: fra-Latn
split: test
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
metrics:
- type: v_measure
value: 26.943825642352117
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (fra-Latn)
config: fra-Latn
split: test
revision: 4672e20407010da34463acc759c162ca9734bca6
metrics:
- type: accuracy
value: 50.20847343644924
- type: f1
value: 47.32281768380685
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (fra-Latn)
config: fra-Latn
split: test
revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8
metrics:
- type: accuracy
value: 52.57565568258238
- type: f1
value: 50.95953249242336
- task:
type: Retrieval
dataset:
type: jinaai/mintakaqa
name: MTEB MintakaRetrieval (fra-Latn)
config: fra-Latn
split: test
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
metrics:
- type: map_at_1
value: 0.164
- type: map_at_10
value: 0.584
- type: map_at_100
value: 0.8240000000000001
- type: map_at_1000
value: 0.9769999999999999
- type: map_at_20
value: 0.6669999999999999
- type: map_at_3
value: 0.40299999999999997
- type: map_at_5
value: 0.47600000000000003
- type: mrr_at_1
value: 0.164
- type: mrr_at_10
value: 0.584
- type: mrr_at_100
value: 0.8240000000000001
- type: mrr_at_1000
value: 0.9769999999999999
- type: mrr_at_20
value: 0.6669999999999999
- type: mrr_at_3
value: 0.40299999999999997
- type: mrr_at_5
value: 0.47600000000000003
- type: ndcg_at_1
value: 0.164
- type: ndcg_at_10
value: 0.8670000000000001
- type: ndcg_at_100
value: 2.443
- type: ndcg_at_1000
value: 8.671
- type: ndcg_at_20
value: 1.176
- type: ndcg_at_3
value: 0.47800000000000004
- type: ndcg_at_5
value: 0.612
- type: precision_at_1
value: 0.164
- type: precision_at_10
value: 0.18
- type: precision_at_100
value: 0.10200000000000001
- type: precision_at_1000
value: 0.064
- type: precision_at_20
value: 0.152
- type: precision_at_3
value: 0.232
- type: precision_at_5
value: 0.20500000000000002
- type: recall_at_1
value: 0.164
- type: recall_at_10
value: 1.802
- type: recall_at_100
value: 10.156
- type: recall_at_1000
value: 64.21
- type: recall_at_20
value: 3.0300000000000002
- type: recall_at_3
value: 0.696
- type: recall_at_5
value: 1.024
- task:
type: PairClassification
dataset:
type: GEM/opusparcus
name: MTEB OpusparcusPC (fra-Latn)
config: fra-Latn
split: test
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
metrics:
- type: cos_sim_accuracy
value: 73.433242506812
- type: cos_sim_ap
value: 86.03577758642086
- type: cos_sim_f1
value: 82.1602478972997
- type: cos_sim_precision
value: 74.12140575079871
- type: cos_sim_recall
value: 92.15491559086395
- type: dot_accuracy
value: 68.8692098092643
- type: dot_ap
value: 75.51070462676913
- type: dot_f1
value: 81.47547628698824
- type: dot_precision
value: 68.83561643835617
- type: dot_recall
value: 99.80139026812313
- type: euclidean_accuracy
value: 73.84196185286103
- type: euclidean_ap
value: 86.27910998502644
- type: euclidean_f1
value: 82.5531914893617
- type: euclidean_precision
value: 72.22635889798957
- type: euclidean_recall
value: 96.32571996027805
- type: manhattan_accuracy
value: 73.9100817438692
- type: manhattan_ap
value: 86.43527306280204
- type: manhattan_f1
value: 82.57349808265872
- type: manhattan_precision
value: 72.31343283582089
- type: manhattan_recall
value: 96.22641509433963
- type: max_accuracy
value: 73.9100817438692
- type: max_ap
value: 86.43527306280204
- type: max_f1
value: 82.57349808265872
- task:
type: PairClassification
dataset:
type: paws-x
name: MTEB PawsX (fra-Latn)
config: fra-Latn
split: test
revision: 8a04d940a42cd40658986fdd8e3da561533a3646
metrics:
- type: cos_sim_accuracy
value: 61.550000000000004
- type: cos_sim_ap
value: 60.30864957174996
- type: cos_sim_f1
value: 62.891311994372145
- type: cos_sim_precision
value: 46.08247422680412
- type: cos_sim_recall
value: 99.00332225913621
- type: dot_accuracy
value: 55.35
- type: dot_ap
value: 47.540176633815165
- type: dot_f1
value: 62.20227821884707
- type: dot_precision
value: 45.18555667001003
- type: dot_recall
value: 99.77851605758582
- type: euclidean_accuracy
value: 61.95
- type: euclidean_ap
value: 60.44070441806914
- type: euclidean_f1
value: 62.89978678038379
- type: euclidean_precision
value: 46.31083202511774
- type: euclidean_recall
value: 98.00664451827242
- type: manhattan_accuracy
value: 61.9
- type: manhattan_ap
value: 60.52939878134297
- type: manhattan_f1
value: 63.034188034188034
- type: manhattan_precision
value: 46.45669291338583
- type: manhattan_recall
value: 98.00664451827242
- type: max_accuracy
value: 61.95
- type: max_ap
value: 60.52939878134297
- type: max_f1
value: 63.034188034188034
- task:
type: STS
dataset:
type: Lajavaness/SICK-fr
name: MTEB SICKFr (fra-Latn)
config: fra-Latn
split: test
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
metrics:
- type: cos_sim_pearson
value: 55.697943925847646
- type: cos_sim_spearman
value: 53.33151992866752
- type: euclidean_pearson
value: 54.32882764397367
- type: euclidean_spearman
value: 53.54968438609837
- type: manhattan_pearson
value: 54.56634524641888
- type: manhattan_spearman
value: 53.81344727168701
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (fra-Latn)
config: fra-Latn
split: test
revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3
metrics:
- type: cos_sim_pearson
value: 22.771197036286605
- type: cos_sim_spearman
value: 60.29016180301653
- type: euclidean_pearson
value: 35.31319988418939
- type: euclidean_spearman
value: 59.61398871828641
- type: manhattan_pearson
value: 36.10315029818106
- type: manhattan_spearman
value: 60.5122301133988
- task:
type: STS
dataset:
type: mteb/stsb_multi_mt
name: MTEB STSBenchmarkMultilingualSTS (fra-Latn)
config: fra-Latn
split: test
revision: 29afa2569dcedaaa2fe6a3dcfebab33d28b82e8c
metrics:
- type: cos_sim_pearson
value: 47.730796921644384
- type: cos_sim_spearman
value: 49.54059034135741
- type: euclidean_pearson
value: 49.48474815018905
- type: euclidean_spearman
value: 50.71533884079761
- type: manhattan_pearson
value: 50.10488858533032
- type: manhattan_spearman
value: 51.1375710610132
- task:
type: Summarization
dataset:
type: lyon-nlp/summarization-summeval-fr-p2p
name: MTEB SummEvalFr (fra-Latn)
config: fra-Latn
split: test
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
metrics:
- type: cos_sim_pearson
value: 29.102661066592816
- type: cos_sim_spearman
value: 29.615000554218955
- type: dot_pearson
value: 19.77690299595119
- type: dot_spearman
value: 19.112834848310158
- task:
type: Reranking
dataset:
type: lyon-nlp/mteb-fr-reranking-syntec-s2p
name: MTEB SyntecReranking (fra-Latn)
config: fra-Latn
split: test
revision: daf0863838cd9e3ba50544cdce3ac2b338a1b0ad
metrics:
- type: map
value: 37.372655122655125
- type: mrr
value: 37.28174603174604
- task:
type: Retrieval
dataset:
type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
name: MTEB SyntecRetrieval (fra-Latn)
config: fra-Latn
split: test
revision: 19661ccdca4dfc2d15122d776b61685f48c68ca9
metrics:
- type: map_at_1
value: 2
- type: map_at_10
value: 6.816999999999999
- type: map_at_100
value: 9.522
- type: map_at_1000
value: 9.522
- type: map_at_20
value: 8.402
- type: map_at_3
value: 4.167
- type: map_at_5
value: 4.867
- type: mrr_at_1
value: 2
- type: mrr_at_10
value: 6.816999999999999
- type: mrr_at_100
value: 9.522
- type: mrr_at_1000
value: 9.522
- type: mrr_at_20
value: 8.402
- type: mrr_at_3
value: 4.167
- type: mrr_at_5
value: 4.867
- type: ndcg_at_1
value: 2
- type: ndcg_at_10
value: 10.940999999999999
- type: ndcg_at_100
value: 25.96
- type: ndcg_at_1000
value: 25.96
- type: ndcg_at_20
value: 16.742
- type: ndcg_at_3
value: 4.893
- type: ndcg_at_5
value: 6.141
- type: precision_at_1
value: 2
- type: precision_at_10
value: 2.5
- type: precision_at_100
value: 1
- type: precision_at_1000
value: 0.1
- type: precision_at_20
value: 2.4
- type: precision_at_3
value: 2.333
- type: precision_at_5
value: 2
- type: recall_at_1
value: 2
- type: recall_at_10
value: 25
- type: recall_at_100
value: 100
- type: recall_at_1000
value: 100
- type: recall_at_20
value: 48
- type: recall_at_3
value: 7.000000000000001
- type: recall_at_5
value: 10
- task:
type: Retrieval
dataset:
type: jinaai/xpqa
name: MTEB XPQARetrieval (fra-Latn)
config: fra-Latn
split: test
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
metrics:
- type: map_at_1
value: 9.437
- type: map_at_10
value: 13.574
- type: map_at_100
value: 14.265
- type: map_at_1000
value: 14.527999999999999
- type: map_at_20
value: 13.834
- type: map_at_3
value: 12.277000000000001
- type: map_at_5
value: 12.936
- type: mrr_at_1
value: 14.285999999999998
- type: mrr_at_10
value: 18.269
- type: mrr_at_100
value: 18.991
- type: mrr_at_1000
value: 19.15
- type: mrr_at_20
value: 18.598
- type: mrr_at_3
value: 17
- type: mrr_at_5
value: 17.681
- type: ndcg_at_1
value: 14.285999999999998
- type: ndcg_at_10
value: 16.447
- type: ndcg_at_100
value: 20.617
- type: ndcg_at_1000
value: 27.589000000000002
- type: ndcg_at_20
value: 17.455000000000002
- type: ndcg_at_3
value: 14.540000000000001
- type: ndcg_at_5
value: 15.084
- type: precision_at_1
value: 14.285999999999998
- type: precision_at_10
value: 3.698
- type: precision_at_100
value: 0.734
- type: precision_at_1000
value: 0.18
- type: precision_at_20
value: 2.163
- type: precision_at_3
value: 8.366999999999999
- type: precision_at_5
value: 5.928
- type: recall_at_1
value: 9.437
- type: recall_at_10
value: 20.16
- type: recall_at_100
value: 38.527
- type: recall_at_1000
value: 85.102
- type: recall_at_20
value: 23.632
- type: recall_at_3
value: 14.562
- type: recall_at_5
value: 16.8
language:
- fr
llm2vec-croissant-mntp
This model is a fine-tuned version of croissantllm/CroissantCool-v0.2 on asi/wikitext_fr. It achieves the following results on the evaluation set:
- Loss: 1.8867
- Accuracy: 0.6078
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.0884 | 100 | 4.7866 | 0.1990 |
No log | 0.1768 | 200 | 4.0496 | 0.3309 |
No log | 0.2653 | 300 | 3.6525 | 0.3779 |
No log | 0.3537 | 400 | 3.2410 | 0.4258 |
3.9116 | 0.4421 | 500 | 3.6305 | 0.3912 |
3.9116 | 0.5305 | 600 | 3.1770 | 0.4406 |
3.9116 | 0.6189 | 700 | 2.4478 | 0.5199 |
3.9116 | 0.7073 | 800 | 2.2383 | 0.5508 |
3.9116 | 0.7958 | 900 | 2.1547 | 0.5635 |
2.4568 | 0.8842 | 1000 | 2.0868 | 0.5759 |
2.4568 | 0.9726 | 1100 | 2.0399 | 0.5820 |
2.4568 | 1.0610 | 1200 | 2.0102 | 0.5873 |
2.4568 | 1.1494 | 1300 | 1.9805 | 0.5897 |
2.4568 | 1.2378 | 1400 | 1.9590 | 0.5955 |
1.9305 | 1.3263 | 1500 | 1.9381 | 0.5982 |
1.9305 | 1.4147 | 1600 | 1.9249 | 0.5995 |
1.9305 | 1.5031 | 1700 | 1.9223 | 0.6017 |
1.9305 | 1.5915 | 1800 | 1.9091 | 0.6037 |
1.9305 | 1.6799 | 1900 | 1.9038 | 0.6042 |
1.8511 | 1.7683 | 2000 | 1.8982 | 0.6045 |
1.8511 | 1.8568 | 2100 | 1.8924 | 0.6060 |
1.8511 | 1.9452 | 2200 | 1.8844 | 0.6072 |
1.8511 | 2.0336 | 2300 | 1.8873 | 0.6087 |
1.8511 | 2.1220 | 2400 | 1.8889 | 0.6068 |
1.8197 | 2.2104 | 2500 | 1.8848 | 0.6080 |
1.8197 | 2.2989 | 2600 | 1.8736 | 0.6091 |
1.8197 | 2.3873 | 2700 | 1.8858 | 0.6072 |
1.8197 | 2.4757 | 2800 | 1.8814 | 0.6088 |
1.8197 | 2.5641 | 2900 | 1.8649 | 0.6103 |
1.8116 | 2.6525 | 3000 | 1.8647 | 0.6091 |
1.8116 | 2.7409 | 3100 | 1.8755 | 0.6101 |
1.8116 | 2.8294 | 3200 | 1.8755 | 0.6099 |
1.8116 | 2.9178 | 3300 | 1.8867 | 0.6078 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.0.1+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1