|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- evanarlian/common_voice_11_0_id_filtered |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-xls-r-164m-id |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: evanarlian/common_voice_11_0_id_filtered |
|
type: evanarlian/common_voice_11_0_id_filtered |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.2923162069919749 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-xls-r-164m-id |
|
|
|
This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-164m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-164m-id) on the evanarlian/common_voice_11_0_id_filtered dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2865 |
|
- Wer: 0.2923 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.3 |
|
- num_epochs: 80.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 1.4047 | 4.59 | 5000 | 1.0167 | 0.9138 | |
|
| 0.587 | 9.18 | 10000 | 0.4639 | 0.5615 | |
|
| 0.3782 | 13.77 | 15000 | 0.3375 | 0.4496 | |
|
| 0.2867 | 18.37 | 20000 | 0.2881 | 0.4022 | |
|
| 0.2519 | 22.96 | 25000 | 0.2775 | 0.3700 | |
|
| 0.1941 | 27.55 | 30000 | 0.2701 | 0.3516 | |
|
| 0.1727 | 32.14 | 35000 | 0.2795 | 0.3486 | |
|
| 0.1448 | 36.73 | 40000 | 0.2878 | 0.3364 | |
|
| 0.1251 | 41.32 | 45000 | 0.2649 | 0.3275 | |
|
| 0.113 | 45.91 | 50000 | 0.2862 | 0.3168 | |
|
| 0.0994 | 50.51 | 55000 | 0.2798 | 0.3091 | |
|
| 0.0938 | 55.1 | 60000 | 0.2864 | 0.3070 | |
|
| 0.0853 | 59.69 | 65000 | 0.2860 | 0.3069 | |
|
| 0.0724 | 64.28 | 70000 | 0.2994 | 0.3003 | |
|
| 0.0723 | 68.87 | 75000 | 0.2951 | 0.2983 | |
|
| 0.0666 | 73.46 | 80000 | 0.2886 | 0.2941 | |
|
| 0.0659 | 78.05 | 85000 | 0.2865 | 0.2923 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.9.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|