File size: 1,863 Bytes
304c3af 7bd8534 30c77ab 304c3af 7bd8534 bc65094 7bd8534 30c77ab 7bd8534 30c77ab 7bd8534 30c77ab 7bd8534 30c77ab 7bd8534 30c77ab 7bd8534 30c77ab 7bd8534 30c77ab 7bd8534 30c77ab 7bd8534 30c77ab 7bd8534 30c77ab 7bd8534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: peft
base_model: google/gemma-2b
license: apache-2.0
datasets:
- b-mc2/sql-create-context
language:
- en
pipeline_tag: text-generation
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This is an SFT-based (Supervised Fine-Tuned) Gemma-2B model for SQL-based tasks without applying flash-attention or using other methods libraries to reduce inference. We used LoRa(Low-Ranking Adaptors) method for Fine-Tuning.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is SFT based Fine-Tuned Gemma-2B model for SQL-based tasks by providing prompts to the model in the format given below(an Example):
""" Question: What is the average number of cows per farm with more than 100 acres of land?
Context: CREATE TABLE farm (Cows INTEGER, Acres INTEGER) """.
Formatting (Prompting) was applied to dataset to improve training loss over time during training as well reducing basic inference speed.
- Finetuned from model : "google/gemma-2b"
## Inference Code:
do the necessary imports then
device_map = {"": 0}
model_id = "google/gemma-2b"
new_model = "Akil15/Gemma_SQL_v.0.1"
# Reload model in FP16 and merge it with LoRA weights
base_model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map=device_map,
)
model = PeftModel.from_pretrained(base_model, new_model)
model = model.merge_and_unload()
# Reload tokenizer to save it
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
text = input()
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
### Framework versions
- PEFT 0.9.0 |