Edit model card

Model description

Middle Dutch NER with PassiveAgressiveClassifier

Intended uses & limitations

This model is not ready to be used in production.

Training Procedure

TESTING

Hyperparameters

The model is trained with below hyperparameters.

Click to expand
Hyperparameter Value
memory
steps [('trans', FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)), ('vectorizer', CountVectorizer()), ('classifier', PassiveAggressiveClassifier(random_state=42))]
verbose False
trans FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)
vectorizer CountVectorizer()
classifier PassiveAggressiveClassifier(random_state=42)
trans__accept_sparse False
trans__check_inverse True
trans__feature_names_out
trans__func <function revert_data at 0x7f3fb95883a0>
trans__inv_kw_args
trans__inverse_func
trans__kw_args
trans__validate False
vectorizer__analyzer word
vectorizer__binary False
vectorizer__decode_error strict
vectorizer__dtype <class 'numpy.int64'>
vectorizer__encoding utf-8
vectorizer__input content
vectorizer__lowercase True
vectorizer__max_df 1.0
vectorizer__max_features
vectorizer__min_df 1
vectorizer__ngram_range (1, 1)
vectorizer__preprocessor
vectorizer__stop_words
vectorizer__strip_accents
vectorizer__token_pattern (?u)\b\w\w+\b
vectorizer__tokenizer
vectorizer__vocabulary
classifier__C 1.0
classifier__average False
classifier__class_weight
classifier__early_stopping False
classifier__fit_intercept True
classifier__loss hinge
classifier__max_iter 1000
classifier__n_iter_no_change 5
classifier__n_jobs
classifier__random_state 42
classifier__shuffle True
classifier__tol 0.001
classifier__validation_fraction 0.1
classifier__verbose 0
classifier__warm_start False

Model Plot

The model plot is below.

Pipeline(steps=[('trans',FunctionTransformer(func=<function revert_data at 0x7f3fb95883a0>)),('vectorizer', CountVectorizer()),('classifier', PassiveAggressiveClassifier(random_state=42))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

You can find the details about evaluation process and the evaluation results.

Metric Value
accuracy including 'O' 0.903724
f1 score including 'O 0.903724
precision excluding 'O' 0.803184
recall excluding 'O' 0.525071
f1 excluding 'O' 0.635011

Confusion Matrix

Confusion Matrix

How to Get Started with the Model

[More Information Needed]

Model Card Authors

Alassea TEST

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

BibTeX

@inproceedings{...,year={2022}}
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.