AlexxxSem's picture
Upload tokenizer
81da8fd verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
base_model: distilbert-base-uncased
model-index:
  - name: distilbert-12-classes
    results: []

distilbert-12-classes

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3754
  • Accuracy: 0.9266
  • F1: 0.9264
  • Precision: 0.9349
  • Recall: 0.9287

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
2.4155 0.96 50 2.1453 0.4432 0.3707 0.5871 0.4659
1.5038 1.92 100 0.7723 0.9261 0.9238 0.9369 0.9402
0.4892 2.88 150 0.3246 0.9318 0.9274 0.9356 0.9374

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2