Model is not supported by VLLM
Hi,
I am trying to deploy this model using VLLM as specified in "Use this model"
Install from pip
Copy
Install vLLM from pip:
pip install vllm
Copy
Load and run the model:
vllm serve "Alibaba-NLP/gte-large-en-v1.5"
Call the server using curl:
curl -X POST "http://localhost:8000/v1/chat/completions" \
-H "Content-Type: application/json" \
--data '{
"model": "Alibaba-NLP/gte-large-en-v1.5"
"messages": [
{"role": "user", "content": "Hello!"}
]
}'
But getting below error
ValueError: Model architectures ['NewModel'] are not supported for now. Supported architectures: ['AquilaModel', 'AquilaForCausalLM', 'BaiChuanForCausalLM', 'BaichuanForCausalLM', 'BloomForCausalLM', 'ChatGLMModel', 'ChatGLMForConditionalGeneration', 'CohereForCausalLM', 'DbrxForCausalLM', 'DeciLMForCausalLM', 'DeepseekForCausalLM', 'DeepseekV2ForCausalLM', 'ExaoneForCausalLM', 'FalconForCausalLM', 'GemmaForCausalLM', 'Gemma2ForCausalLM', 'GPT2LMHeadModel', 'GPTBigCodeForCausalLM', 'GPTJForCausalLM', 'GPTNeoXForCausalLM', 'InternLMForCausalLM', 'InternLM2ForCausalLM', 'JAISLMHeadModel', 'LlamaForCausalLM', 'LLaMAForCausalLM', 'MistralForCausalLM', 'MixtralForCausalLM', 'QuantMixtralForCausalLM', 'MptForCausalLM', 'MPTForCausalLM', 'MiniCPMForCausalLM', 'NemotronForCausalLM', 'OlmoForCausalLM', 'OPTForCausalLM', 'OrionForCausalLM', 'PersimmonForCausalLM', 'PhiForCausalLM', 'Phi3ForCausalLM', 'PhiMoEForCausalLM', 'Qwen2ForCausalLM', 'Qwen2MoeForCausalLM', 'Qwen2VLForConditionalGeneration', 'RWForCausalLM', 'StableLMEpochForCausalLM', 'StableLmForCausalLM', 'Starcoder2ForCausalLM', 'ArcticForCausalLM', 'XverseForCausalLM', 'Phi3SmallForCausalLM', 'MedusaModel', 'EAGLEModel', 'MLPSpeculatorPreTrainedModel', 'JambaForCausalLM', 'GraniteForCausalLM', 'MistralModel', 'Blip2ForConditionalGeneration', 'ChameleonForConditionalGeneration', 'FuyuForCausalLM', 'InternVLChatModel', 'LlavaForConditionalGeneration', 'LlavaNextForConditionalGeneration', 'LlavaNextVideoForConditionalGeneration', 'MiniCPMV', 'PaliGemmaForConditionalGeneration', 'Phi3VForCausalLM', 'PixtralForConditionalGeneration', 'QWenLMHeadModel', 'UltravoxModel', 'BartModel', 'BartForConditionalGeneration']
ERROR 09-16 20:51:27 api_server.py:188] RPCServer process died before responding to readiness probe
Could anyone please let me know what I am missing here ?
Thanks.
I don't see any information on the model card about using it with vLLM. Please keep in mind that vLLM is typically used for conversational LLMs, whereas this model is for creating embeddings.
You can use TEI to run the model locally:
model=Alibaba-NLP/gte-large-en-v1.5
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all -p 8080:80 -v $volume:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.5 --model-id $model
If you want a hosted version, you can use Inference Endpoints.