AmberYifan's picture
Model save
d5834e2 verified
metadata
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
  - generated_from_trainer
model-index:
  - name: Mistral-7B-v0.1-gen-dpo-10k
    results: []

Mistral-7B-v0.1-gen-dpo-10k

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4841
  • Rewards/real: 6.6281
  • Rewards/generated: 0.7385
  • Rewards/accuracies: 0.9038
  • Rewards/margins: 5.8896
  • Logps/generated: -226.3850
  • Logps/real: -146.0557
  • Logits/generated: -2.4268
  • Logits/real: -2.5712

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/real Rewards/generated Rewards/accuracies Rewards/margins Logps/generated Logps/real Logits/generated Logits/real
0.6898 0.1984 62 0.6845 0.1316 -1.2271 0.8269 1.3587 -246.0414 -211.0208 -2.6139 -2.5606
0.5637 0.3968 124 0.6091 1.9039 -1.0140 0.9231 2.9179 -243.9099 -193.2971 -2.9188 -2.9273
0.4765 0.5952 186 0.4901 1.6316 -2.9131 0.9615 4.5447 -262.9012 -196.0205 -2.6050 -2.6193
0.4421 0.7936 248 0.4296 0.8748 -3.7695 0.9423 4.6443 -271.4653 -203.5885 -2.5477 -2.5049
0.4329 0.992 310 0.3885 1.7310 -3.2873 0.9808 5.0183 -266.6432 -195.0263 -2.4849 -2.4779
0.192 1.1904 372 0.4325 4.2551 -0.5848 0.9231 4.8399 -239.6185 -169.7859 -2.6992 -2.7276
0.1832 1.3888 434 0.3965 4.0302 -1.0932 0.9038 5.1234 -244.7022 -172.0349 -2.6359 -2.6597
0.1759 1.5872 496 0.4029 4.6281 -1.2718 0.9038 5.8999 -246.4886 -166.0557 -2.5095 -2.5768
0.1911 1.7856 558 0.4281 4.7928 -0.9888 0.9231 5.7817 -243.6584 -164.4082 -2.7026 -2.8069
0.1719 1.984 620 0.4522 5.4290 0.0713 0.8654 5.3577 -233.0573 -158.0468 -2.6334 -2.6747
0.1363 2.1824 682 0.4649 6.2001 0.9000 0.8846 5.3001 -224.7699 -150.3351 -2.5111 -2.6322
0.1349 2.3808 744 0.4958 6.5905 1.3552 0.8846 5.2353 -220.2184 -146.4319 -2.5129 -2.6396
0.1316 2.5792 806 0.4796 6.6882 1.1784 0.9038 5.5098 -221.9857 -145.4545 -2.5378 -2.6846
0.1293 2.7776 868 0.4938 6.8678 1.4561 0.8846 5.4117 -219.2092 -143.6585 -2.4843 -2.6386
0.1244 2.976 930 0.4841 6.6281 0.7385 0.9038 5.8896 -226.3850 -146.0557 -2.4268 -2.5712

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1