Amir13's picture
Update README.md
3ab593a
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-base-conll2003-en
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9478680879413725
          - name: Recall
            type: recall
            value: 0.9588879528222409
          - name: F1
            type: f1
            value: 0.9533461763966831
          - name: Accuracy
            type: accuracy
            value: 0.9917972098823162

xlm-roberta-base-conll2003-en

This model is a fine-tuned version of xlm-roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0534
  • Precision: 0.9479
  • Recall: 0.9589
  • F1: 0.9533
  • Accuracy: 0.9918

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 439 0.0535 0.9131 0.9238 0.9184 0.9865
0.1663 2.0 878 0.0461 0.9305 0.9390 0.9348 0.9887
0.0404 3.0 1317 0.0366 0.9431 0.9501 0.9466 0.9910
0.0252 4.0 1756 0.0381 0.9395 0.9516 0.9455 0.9908
0.0172 5.0 2195 0.0398 0.9409 0.9523 0.9466 0.9911
0.0119 6.0 2634 0.0429 0.9389 0.9560 0.9474 0.9910
0.0091 7.0 3073 0.0463 0.9451 0.9548 0.9500 0.9913
0.0063 8.0 3512 0.0446 0.9478 0.9575 0.9526 0.9919
0.0063 9.0 3951 0.0513 0.9424 0.9569 0.9496 0.9911
0.0049 10.0 4390 0.0494 0.9470 0.9545 0.9507 0.9915
0.0036 11.0 4829 0.0506 0.9477 0.9553 0.9515 0.9917
0.0029 12.0 5268 0.0518 0.9472 0.9586 0.9529 0.9919
0.0026 13.0 5707 0.0530 0.9451 0.9567 0.9508 0.9916
0.0021 14.0 6146 0.0526 0.9468 0.9567 0.9517 0.9917
0.0016 15.0 6585 0.0534 0.9479 0.9589 0.9533 0.9918

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2

Citation

@misc{https://doi.org/10.48550/arxiv.2302.09611,
  doi = {10.48550/ARXIV.2302.09611},
  url = {https://arxiv.org/abs/2302.09611},
  author = {Sartipi, Amir and Fatemi, Afsaneh},
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {Exploring the Potential of Machine Translation for Generating Named Entity Datasets: A Case Study between Persian and English},
  publisher = {arXiv},
  year = {2023},
  copyright = {arXiv.org perpetual, non-exclusive license}
}