tags:
- generated_from_trainer
datasets:
- nielsr/funsd-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-funsd
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: nielsr/funsd-layoutlmv3
type: nielsr/funsd-layoutlmv3
args: funsd
metrics:
- name: Precision
type: precision
value: 0.9026198714780029
- name: Recall
type: recall
value: 0.913
- name: F1
type: f1
value: 0.9077802634849614
- name: Accuracy
type: accuracy
value: 0.8330271015158475
layoutlmv3-finetuned-funsd
This model is a fine-tuned version of microsoft/layoutlmv3-base on the nielsr/funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:
- Loss: 1.1164
- Precision: 0.9026
- Recall: 0.913
- F1: 0.9078
- Accuracy: 0.8330
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
[4000/4000 20:34, Epoch 53/54] Step Training Loss Validation Loss Precision Recall F1 Accuracy 250 No log 0.435449 0.854588 0.902136 0.877719 0.835968 500 0.505800 0.611310 0.869822 0.876304 0.873051 0.839177 750 0.505800 0.635022 0.879886 0.917039 0.898078 0.853085 1000 0.097000 0.765935 0.900818 0.929459 0.914914 0.860097 1250 0.097000 0.887739 0.885533 0.903130 0.894245 0.842625 1500 0.029900 0.948754 0.898018 0.923000 0.910338 0.843575 1750 0.029900 1.102811 0.900433 0.929955 0.914956 0.840128 2000 0.009700 1.039040 0.901415 0.917536 0.909404 0.852728 2250 0.009700 1.044235 0.904716 0.924491 0.914496 0.849519 2500 0.002500 1.013194 0.913086 0.918530 0.915800 0.849637 2750 0.002500 1.017520 0.908605 0.928465 0.918428 0.854986 3000 0.000900 1.029559 0.914216 0.926478 0.920306 0.859384 3250 0.000900 1.038318 0.918177 0.930949 0.924519 0.859979 3500 0.000800 1.045578 0.914216 0.926478 0.920306 0.858552 3750 0.000800 1.040568 0.913894 0.927968 0.920877 0.858433 4000 0.000700 1.041146 0.913894 0.927968 0.920877 0.8585528552
Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6