Ammar-alhaj-ali's picture
Update README.md
e96c6be
|
raw
history blame
4.82 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - nielsr/funsd-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-funsd
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: nielsr/funsd-layoutlmv3
          type: nielsr/funsd-layoutlmv3
          args: funsd
        metrics:
          - name: Precision
            type: precision
            value: 0.9026198714780029
          - name: Recall
            type: recall
            value: 0.913
          - name: F1
            type: f1
            value: 0.9077802634849614
          - name: Accuracy
            type: accuracy
            value: 0.8330271015158475

layoutlmv3-finetuned-funsd

This model is a fine-tuned version of microsoft/layoutlmv3-base on the nielsr/funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1164
  • Precision: 0.9026
  • Recall: 0.913
  • F1: 0.9078
  • Accuracy: 0.8330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 10.0 100 0.5238 0.8366 0.886 0.8606 0.8410
No log 20.0 200 0.6930 0.8751 0.8965 0.8857 0.8322
No log 30.0 300 0.7784 0.8902 0.908 0.8990 0.8414
No log 40.0 400 0.9056 0.8916 0.905 0.8983 0.8364
0.2429 50.0 500 1.0016 0.8954 0.9075 0.9014 0.8298
0.2429 60.0 600 1.0097 0.8899 0.897 0.8934 0.8294
0.2429 70.0 700 1.0722 0.9035 0.9085 0.9060 0.8315
0.2429 80.0 800 1.0884 0.8905 0.9105 0.9004 0.8269
0.2429 90.0 900 1.1292 0.8938 0.909 0.9013 0.8279
0.0098 100.0 1000 1.1164 0.9026 0.913 0.9078 0.8330
No log 10.0 100 0.5238 0.8366 0.886 0.8606 0.8410
No log 20.0 200 0.6930 0.8751 0.8965 0.8857 0.8322
No log 30.0 300 0.7784 0.8902 0.908 0.8990 0.8414
No log 40.0 400 0.9056 0.8916 0.905 0.8983 0.8364
0.2429 50.0 500 1.0016 0.8954 0.9075 0.9014 0.8298
0.2429 60.0 600 1.0097 0.8899 0.897 0.8934 0.8294
0.2429 70.0 700 1.0722 0.9035 0.9085 0.9060 0.8315
0.2429 80.0 800 1.0884 0.8905 0.9105 0.9004 0.8269
0.2429 90.0 900 1.1292 0.8938 0.909 0.9013 0.8279
0.0098 100.0 1000 1.1164 0.9026 0.913 0.9078 0.8330

[4000/4000 20:34, Epoch 53/54] Step Training Loss Validation Loss Precision Recall F1 Accuracy 250 No log 0.435449 0.854588 0.902136 0.877719 0.835968 500 0.505800 0.611310 0.869822 0.876304 0.873051 0.839177 750 0.505800 0.635022 0.879886 0.917039 0.898078 0.853085 1000 0.097000 0.765935 0.900818 0.929459 0.914914 0.860097 1250 0.097000 0.887739 0.885533 0.903130 0.894245 0.842625 1500 0.029900 0.948754 0.898018 0.923000 0.910338 0.843575 1750 0.029900 1.102811 0.900433 0.929955 0.914956 0.840128 2000 0.009700 1.039040 0.901415 0.917536 0.909404 0.852728 2250 0.009700 1.044235 0.904716 0.924491 0.914496 0.849519 2500 0.002500 1.013194 0.913086 0.918530 0.915800 0.849637 2750 0.002500 1.017520 0.908605 0.928465 0.918428 0.854986 3000 0.000900 1.029559 0.914216 0.926478 0.920306 0.859384 3250 0.000900 1.038318 0.918177 0.930949 0.924519 0.859979 3500 0.000800 1.045578 0.914216 0.926478 0.920306 0.858552 3750 0.000800 1.040568 0.913894 0.927968 0.920877 0.858433 4000 0.000700 1.041146 0.913894 0.927968 0.920877 0.8585528552

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 2.0.0
  • Tokenizers 0.11.6