Ammar-alhaj-ali's picture
Update README.md
9ebb0ae
metadata
tags:
  - generated_from_trainer
datasets:
  - invoice
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-fine-tuning-invoice
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: Invoice
          type: invoice
          args: invoice
        metrics:
          - name: Precision
            type: precision
            value: 1
          - name: Recall
            type: recall
            value: 1
          - name: F1
            type: f1
            value: 1
          - name: Accuracy
            type: accuracy
            value: 1

LayoutLMv3-Fine-Tuning-Invoice Model

Model description

LayoutLMv3-Fine-Tuning-Invoice Model is a fine-tuned version of microsoft/layoutlmv3-base on the invoice dataset. For the fine-tuning, We used Invoice Dataset that includes 12 labels ('Other', 'ABN', 'BILLER', 'BILLER_ADDRESS', 'BILLER_POST_CODE', 'DUE_DATE', 'GST', 'INVOICE_DATE', 'INVOICE_NUMBER', 'SUBTOTAL', 'TOTAL', 'BILLER_ADDRESS').

It achieves the following results on the evaluation set:

  • Loss: 0.005334
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • optimizer: epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 1000

Training results

Training Loss Step Validation Loss Precision Recall F1 Accuracy
No log 100 0.070030 0.972000 0.985801 0.978852 0.997051
No log 200 0.017637 0.972000 0.985801 0.978852 0.997051
No log 300 0.015573 0.972000 0.985801 0.978852 0.997051
No log 400 0.011000 0.973737 0.977688 0.978852 0.996419
0.110800 500 0.005334 1.0 1.0 1.0 1.0
0.110800 600 0.002994 1.0 1.0 1.0 1.0
0.110800 700 0.002330 1.0 1.0 1.0 1.0
0.110800 800 0.002188 1.0 1.0 1.0 1.0
0.110800 900 0.002105 1.0 1.0 1.0 1.0
0.004900 1000 0.002111 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.20.1