First - you should prepare few functions to talk to model
import torch
from transformers import BertForSequenceClassification, AutoTokenizer
LABELS = ['neutral', 'happiness', 'sadness', 'enthusiasm', 'fear', 'anger', 'disgust']
tokenizer = AutoTokenizer.from_pretrained('Aniemore/rubert-tiny2-russian-emotion-detection')
model = BertForSequenceClassification.from_pretrained('Aniemore/rubert-tiny2-russian-emotion-detection')
@torch.no_grad()
def predict_emotion(text: str) -> str:
"""
We take the input text, tokenize it, pass it through the model, and then return the predicted label
:param text: The text to be classified
:type text: str
:return: The predicted emotion
"""
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**inputs)
predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
predicted = torch.argmax(predicted, dim=1).numpy()
return LABELS[predicted[0]]
@torch.no_grad()
def predict_emotions(text: str) -> list:
"""
It takes a string of text, tokenizes it, feeds it to the model, and returns a dictionary of emotions and their
probabilities
:param text: The text you want to classify
:type text: str
:return: A dictionary of emotions and their probabilities.
"""
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**inputs)
predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
emotions_list = {}
for i in range(len(predicted.numpy()[0].tolist())):
emotions_list[LABELS[i]] = predicted.numpy()[0].tolist()[i]
return emotions_list
And then - just gently ask a model to predict your emotion
simple_prediction = predict_emotion("Какой же сегодня прекрасный день, братья")
not_simple_prediction = predict_emotions("Какой же сегодня прекрасный день, братья")
print(simple_prediction)
print(not_simple_prediction)
# happiness
# {'neutral': 0.0004941817605867982, 'happiness': 0.9979524612426758, 'sadness': 0.0002536600804887712, 'enthusiasm': 0.0005498139653354883, 'fear': 0.00025326196919195354, 'anger': 0.0003583927755244076, 'disgust': 0.00013807788491249084}
Or, just simply use our package (GitHub), that can do whatever you want (or maybe not)
🤗
Citations
@misc{Aniemore,
author = {Артем Аментес, Илья Лубенец, Никита Давидчук},
title = {Открытая библиотека искусственного интеллекта для анализа и выявления эмоциональных оттенков речи человека},
year = {2022},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.com/aniemore/Aniemore}},
email = {hello@socialcode.ru}
}
- Downloads last month
- 17,223
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train Aniemore/rubert-tiny2-russian-emotion-detection
Evaluation results
- multilabel accuracy on CEDR M7self-reported85%
- accuracy on CEDR M7self-reported76%