ESPnet2 ASR model
espnet/shihlun_asr_whisper_medium_finetuned_chime4
This model was trained by Shih-Lun Wu (slseanwu) using the chime4 recipe in espnet.
Demo: How to use in ESPnet2
#!/usr/bin/env bash
Set bash to 'debug' mode, it will exit on :
-e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e set -u set -o pipefail
train_set=train valid_set=dev test_sets="dev test1"
asr_config=conf/train_asr_whisper_large_lora_finetune.yaml inference_config=conf/decode_asr_whisper_noctc_beam10.yaml
lm_config=conf/train_lm_transformer.yaml use_lm=false use_wordlm=false
speed perturbation related
(train_set will be "${train_set}_sp" if speed_perturb_factors is specified)
speed_perturb_factors="0.9 1.0 1.1"
./asr.sh
./asr.sh
--skip_data_prep false
--skip_train false
--gpu_inference true
--ngpu 4
--lang ko
--token_type whisper_multilingual
--feats_normalize ""
--stage 11
--use_lm ${use_lm}
--use_word_lm ${use_wordlm}
--lm_config "${lm_config}"
--cleaner whisper_basic
--asr_config "${asr_config}"
--inference_config "${inference_config}"
--train_set "${train_set}"
--valid_set "${valid_set}"
--test_sets "${test_sets}"
--speed_perturb_factors "${speed_perturb_factors}"
--asr_speech_fold_length 512
--asr_text_fold_length 150
--lm_fold_length 150
--lm_train_text "data/${train_set}/text" "$@"
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Tue Jan 10 04:15:30 CST 2023`
- python version: `3.9.13 (main, Aug 25 2022, 23:26:10) [GCC 11.2.0]`
- espnet version: `espnet 202211`
- pytorch version: `pytorch 1.12.1`
- Git hash: `d89be931dcc8f61437ac49cbe39a773f2054c50c`
- Commit date: `Mon Jan 9 11:06:45 2023 -0600`
## whisper_large_v2_lora_fintuning
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|24791|97.8|1.7|0.5|0.3|2.5|24.5|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|24792|96.1|3.0|0.9|0.5|4.4|35.6|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|19341|96.4|2.9|0.7|0.5|4.1|33.0|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|19344|93.4|5.0|1.7|0.8|7.4|41.8|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|24791|97.7|1.8|0.5|0.4|2.8|25.5|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|24792|96.0|3.3|0.8|0.7|4.8|36.0|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|19341|96.1|3.3|0.6|0.7|4.6|34.9|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|19344|92.9|5.8|1.3|1.2|8.3|43.2|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|141889|99.1|0.3|0.5|0.3|1.2|24.5|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|141900|98.2|0.8|1.0|0.5|2.3|35.6|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|110558|98.5|0.7|0.8|0.5|1.9|33.0|
|decode_asr_whisper_noctc_beam20_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|110572|96.5|1.6|1.9|0.8|4.3|41.8|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|141889|99.1|0.4|0.5|0.5|1.3|25.5|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|141900|98.2|0.9|0.9|0.6|2.4|36.0|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|110558|98.4|0.9|0.7|0.6|2.2|34.9|
|decode_asr_whisper_noctc_greedy_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|110572|96.3|2.0|1.7|1.2|4.9|43.2|