Edit model card

w2v-bert-Telugu-large

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2203
  • Wer: 0.2210
  • Cer: 0.0392

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
2.9356 0.6579 300 0.5106 0.5659 0.1265
0.4276 1.3158 600 0.4152 0.4787 0.0953
0.3481 1.9737 900 0.3907 0.4076 0.0824
0.239 2.6316 1200 0.3014 0.3680 0.0660
0.1957 3.2895 1500 0.3159 0.3361 0.0629
0.1454 3.9474 1800 0.2517 0.2744 0.0489
0.1 4.6053 2100 0.2371 0.2621 0.0469
0.0748 5.2632 2400 0.2243 0.2469 0.0432
0.0453 5.9211 2700 0.2188 0.2381 0.0409
0.029 6.5789 3000 0.2203 0.2210 0.0392

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Anujgr8/w2v-bert-Telugu-large

Finetuned
(183)
this model