WikiBert2WikiBert / README.md
Arashasg's picture
Create README.md
9eacb85
|
raw
history blame
1.66 kB

WikiBert2WikiBert

Bert language models can be employed for Summarization tasks. WikiBert2WikiBert is an encoder-decoder transformer model that is initialized using the Persian WikiBert Model weights. The WikiBert Model is a Bert language model which is fine-tuned on Persian Wikipedia. After using the WikiBert weights for initialization, the model is trained for five epochs on PN-summary and Persian BBC datasets.

How to Use:

You can use the code below to get the model's outputs, or you can simply use the demo on the right.

from transformers import (
    BertTokenizerFast,
    EncoderDecoderConfig,
    EncoderDecoderModel,
    BertConfig
)

model_name = 'Arashasg/WikiBert2WikiBert'
tokenizer = BertTokenizerFast.from_pretrained(model_name)
config = EncoderDecoderConfig.from_pretrained(model_name)
model = EncoderDecoderModel.from_pretrained(model_name, config=config)


def generate_summary(text):
    inputs = tokenizer(text, padding="max_length", truncation=True, max_length=512, return_tensors="pt")
    input_ids = inputs.input_ids.to("cuda")
    attention_mask = inputs.attention_mask.to("cuda")

    outputs = model.generate(input_ids, attention_mask=attention_mask)

    output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True)


    return output_str

input = 'your input comes here'
summary = generate_summary(input)

language: - fa tags: - Wikipedia - Summarizer - bert2bert task_categories: - summarization - text generation task_ids: - news-articles-summarization license: - apache-2.0 multilinguality: - monolingual datasets: - pn-summary - XL-Sum metrics: - rouge-1 - rouge-2 - rouge-l