qwen_lora

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0622
  • Mse: 0.0622
  • Mae: 0.1968
  • R Squared: 0.3060

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mse Mae R Squared
0.0875 0.3115 100 0.0854 0.0854 0.2351 0.0471
0.0786 0.6231 200 0.0741 0.0741 0.2186 0.1735
0.0709 0.9346 300 0.0716 0.0716 0.2193 0.2018
0.0675 1.2461 400 0.0735 0.0735 0.2106 0.1803
0.0681 1.5576 500 0.0710 0.0710 0.2076 0.2081
0.0627 1.8692 600 0.0675 0.0675 0.2059 0.2468
0.0628 2.1807 700 0.0657 0.0657 0.2031 0.2677
0.0591 2.4922 800 0.0646 0.0646 0.2033 0.2799
0.06 2.8037 900 0.0660 0.0660 0.2007 0.2638
0.0553 3.1153 1000 0.0633 0.0633 0.2012 0.2944
0.0612 3.4268 1100 0.0654 0.0654 0.2078 0.2711
0.0542 3.7383 1200 0.0627 0.0627 0.1987 0.3009
0.0529 4.0498 1300 0.0623 0.0623 0.1970 0.3049
0.0546 4.3614 1400 0.0624 0.0624 0.1962 0.3044
0.0535 4.6729 1500 0.0623 0.0623 0.1972 0.3055
0.0536 4.9844 1600 0.0622 0.0622 0.1968 0.3060

Framework versions

  • PEFT 0.13.2
  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
92
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Ashley37sky/qwen_lora

Base model

Qwen/Qwen2.5-1.5B
Adapter
(51)
this model