bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news-extracted-sumy

This model is a fine-tuned version of mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3228
  • Rouge1: 56.5706
  • Rouge2: 43.0906
  • Rougel: 47.9957
  • Rougelsum: 53.417

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.3226 1.0 223 0.3225 55.7639 41.9414 46.9804 52.5639
0.262 2.0 446 0.3198 55.7522 42.0929 46.8388 52.6659
0.2153 3.0 669 0.3195 55.7091 42.2111 47.2641 52.5765
0.1805 4.0 892 0.3164 55.8115 42.5536 47.3529 52.7672
0.1527 5.0 1115 0.3203 56.8658 43.4238 48.2268 53.8136
0.14 6.0 1338 0.3234 55.7138 41.8562 46.8362 52.5201
0.1252 7.0 1561 0.3228 56.5706 43.0906 47.9957 53.417
0.1229 8.0 1784 0.3228 56.5706 43.0906 47.9957 53.417

Framework versions

  • Transformers 4.21.0
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.