metadata
license: apache-2.0
tags:
- summarisation
- generated_from_trainer
metrics:
- rouge
model-index:
- name: >-
bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news
results: []
bert-small2bert-small-finetuned-cnn_daily_mail-summarization-finetuned-bbc-news
This model is a fine-tuned version of mrm8488/bert-small2bert-small-finetuned-cnn_daily_mail-summarization on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6835
- Rouge1: 58.9345
- Rouge2: 47.1037
- Rougel: 40.9839
- Rougelsum: 57.6981
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
0.8246 | 1.0 | 223 | 0.7050 | 55.7882 | 42.9793 | 38.4511 | 54.3125 |
0.6414 | 2.0 | 446 | 0.6834 | 55.149 | 42.664 | 38.3864 | 53.7712 |
0.5603 | 3.0 | 669 | 0.6815 | 56.9756 | 44.8057 | 39.1377 | 55.5815 |
0.5079 | 4.0 | 892 | 0.6749 | 57.7397 | 45.6267 | 40.0509 | 56.3886 |
0.4622 | 5.0 | 1115 | 0.6781 | 58.07 | 45.9102 | 40.2704 | 56.7008 |
0.4263 | 6.0 | 1338 | 0.6798 | 58.1215 | 45.976 | 40.256 | 56.8203 |
0.399 | 7.0 | 1561 | 0.6798 | 58.5486 | 46.6901 | 40.8045 | 57.2947 |
0.3815 | 8.0 | 1784 | 0.6835 | 58.9345 | 47.1037 | 40.9839 | 57.6981 |
Framework versions
- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1