https://github.com/BM-K/Sentence-Embedding-is-all-you-need
Korean-Sentence-Embedding
๐ญ Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides environments where individuals can train models.
Quick tour
import torch
from transformers import AutoModel, AutoTokenizer
def cal_score(a, b):
if len(a.shape) == 1: a = a.unsqueeze(0)
if len(b.shape) == 1: b = b.unsqueeze(0)
a_norm = a / a.norm(dim=1)[:, None]
b_norm = b / b.norm(dim=1)[:, None]
return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100
model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta-multitask')
AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta-multitask')
sentences = ['์นํ๊ฐ ๋คํ์ ๊ฐ๋ก ์ง๋ฌ ๋จน์ด๋ฅผ ์ซ๋๋ค.',
'์นํ ํ ๋ง๋ฆฌ๊ฐ ๋จน์ด ๋ค์์ ๋ฌ๋ฆฌ๊ณ ์๋ค.',
'์์ญ์ด ํ ๋ง๋ฆฌ๊ฐ ๋๋ผ์ ์ฐ์ฃผํ๋ค.']
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
embeddings, _ = model(**inputs, return_dict=False)
score01 = cal_score(embeddings[0][0], embeddings[1][0])
score02 = cal_score(embeddings[0][0], embeddings[2][0])
Performance
- Semantic Textual Similarity test set results
Model | AVG | Cosine Pearson | Cosine Spearman | Euclidean Pearson | Euclidean Spearman | Manhattan Pearson | Manhattan Spearman | Dot Pearson | Dot Spearman |
---|---|---|---|---|---|---|---|---|---|
KoSBERTโ SKT | 77.40 | 78.81 | 78.47 | 77.68 | 77.78 | 77.71 | 77.83 | 75.75 | 75.22 |
KoSBERT | 80.39 | 82.13 | 82.25 | 80.67 | 80.75 | 80.69 | 80.78 | 77.96 | 77.90 |
KoSRoBERTa | 81.64 | 81.20 | 82.20 | 81.79 | 82.34 | 81.59 | 82.20 | 80.62 | 81.25 |
KoSentenceBART | 77.14 | 79.71 | 78.74 | 78.42 | 78.02 | 78.40 | 78.00 | 74.24 | 72.15 |
KoSentenceT5 | 77.83 | 80.87 | 79.74 | 80.24 | 79.36 | 80.19 | 79.27 | 72.81 | 70.17 |
KoSimCSE-BERTโ SKT | 81.32 | 82.12 | 82.56 | 81.84 | 81.63 | 81.99 | 81.74 | 79.55 | 79.19 |
KoSimCSE-BERT | 83.37 | 83.22 | 83.58 | 83.24 | 83.60 | 83.15 | 83.54 | 83.13 | 83.49 |
KoSimCSE-RoBERTa | 83.65 | 83.60 | 83.77 | 83.54 | 83.76 | 83.55 | 83.77 | 83.55 | 83.64 |
KoSimCSE-BERT-multitask | 85.71 | 85.29 | 86.02 | 85.63 | 86.01 | 85.57 | 85.97 | 85.26 | 85.93 |
KoSimCSE-RoBERTa-multitask | 85.77 | 85.08 | 86.12 | 85.84 | 86.12 | 85.83 | 86.12 | 85.03 | 85.99 |
- Downloads last month
- 48,129
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.