instructionBERTtest / README.md
Bachstelze's picture
Update README.md
e809f4e
metadata
language:
  - en
tags:
  - text2text-generation
widget:
  - text: >-
      Please answer to the following question. Who is going to be the next
      Ballon d'or?
    example_title: Question Answering
  - text: >-
      Q: Can Geoffrey Hinton have a conversation with George Washington? Give
      the rationale before answering.
    example_title: Logical reasoning
  - text: >-
      Please answer the following question. What is the boiling point of
      Nitrogen?
    example_title: Scientific knowledge
  - text: >-
      Answer the following yes/no question. Can you write a whole Haiku in a
      single tweet?
    example_title: Yes/no question
  - text: >-
      Answer the following yes/no question by reasoning step-by-step. Can you
      write a whole Haiku in a single tweet?
    example_title: Reasoning task
  - text: 'Q: ( False or not False or False ) is? A: Let''s think step by step'
    example_title: Boolean Expressions
  - text: >-
      The square root of x is the cube root of y. What is y to the power of 2,
      if x = 4?
    example_title: Math reasoning
  - text: >-
      Premise:  At my age you will probably have learned one lesson.
      Hypothesis:  It's not certain how many lessons you'll learn by your
      thirties. Does the premise entail the hypothesis?
    example_title: Premise and hypothesis
datasets:
  - Muennighoff/flan
  - Open-Orca/SlimOrca-Dedup
  - garage-bAInd/Open-Platypus
  - Weyaxi/HelpSteer-filtered
  - GAIR/lima
license: mit

Model Card for the test-version of instructionBERT for Bertology

instruction BERT drawing

A minimalistic instruction model with an already good analysed and pretrained encoder like BERT. So we can research the Bertology with instruction-tuned models, look at the attention and investigate what happens to BERT embeddings during fine-tuning.

The trainings code is released at the instructionBERT repository. We used the Huggingface API for warm-starting BertGeneration with Encoder-Decoder-Models for this purpose.

Run the model with a longer output

from transformers import AutoTokenizer, EncoderDecoderModel

# load the fine-tuned seq2seq model and corresponding tokenizer
model_name = "Bachstelze/instructionBERTtest"
model = EncoderDecoderModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

input = "Write a poem about love, peace and pancake."
input_ids = tokenizer(input, return_tensors="pt").input_ids
output_ids = model.generate(input_ids, max_new_tokens=200)
print(tokenizer.decode(output_ids[0]))

Training parameters

  • base model: "bert-base-cased"
  • test subset of the Muennighoff/flan dataset
  • trained for 0.97 epochs
  • batch size of 14
  • 10000 warm-up steps
  • learning rate of 0.00005

Purpose of instructionBERT

InstructionBERT is intended for research purposes. The model-generated text should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications.