w2v-bert-2_6_datasets

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3804
  • Wer: 0.2629

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1149 0.3795 600 0.5531 0.4947
0.2052 0.7590 1200 0.4347 0.4689
0.1576 1.1385 1800 0.3204 0.3717
0.1263 1.5180 2400 0.3928 0.4128
0.1205 1.8975 3000 0.3214 0.3607
0.0993 2.2770 3600 0.3063 0.3514
0.091 2.6565 4200 0.3078 0.3390
0.0877 3.0361 4800 0.2673 0.3165
0.0716 3.4156 5400 0.2798 0.3039
0.0681 3.7951 6000 0.2710 0.2948
0.0592 4.1746 6600 0.2728 0.3072
0.0525 4.5541 7200 0.2828 0.3133
0.0497 4.9336 7800 0.3039 0.3132
0.0402 5.3131 8400 0.2741 0.2832
0.0389 5.6926 9000 0.2837 0.3018
0.0371 6.0721 9600 0.2732 0.2830
0.0286 6.4516 10200 0.2998 0.2794
0.028 6.8311 10800 0.2904 0.2769
0.0232 7.2106 11400 0.3183 0.2752
0.0201 7.5901 12000 0.3045 0.2665
0.0197 7.9696 12600 0.3137 0.2733
0.0139 8.3491 13200 0.3438 0.2670
0.0128 8.7287 13800 0.3385 0.2651
0.0115 9.1082 14400 0.3669 0.2671
0.0079 9.4877 15000 0.3695 0.2613
0.008 9.8672 15600 0.3804 0.2629

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
78
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Bajiyo/w2v-bert-2_7_datasets

Finetuned
(208)
this model