cnn_news_summary_model_trained_on_reduced_data
This model is a fine-tuned version of t5-small on the cnn_dailymail dataset. It achieves the following results on the evaluation set:
- Loss: 1.6040
- Rouge1: 0.2181
- Rouge2: 0.0943
- Rougel: 0.184
- Rougelsum: 0.1838
- Generated Length: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 431 | 1.6222 | 0.2178 | 0.0936 | 0.1828 | 0.1827 | 19.0 |
1.9218 | 2.0 | 862 | 1.6069 | 0.2177 | 0.0939 | 0.1835 | 0.1834 | 19.0 |
1.8271 | 3.0 | 1293 | 1.6040 | 0.2181 | 0.0943 | 0.184 | 0.1838 | 19.0 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Baldezo313/cnn_news_summary_model_trained_on_reduced_data
Base model
google-t5/t5-small