File size: 7,096 Bytes
00f4a0d
 
 
 
 
 
113fc20
00f4a0d
 
 
 
 
 
 
 
 
 
113fc20
00f4a0d
78928a5
 
 
 
 
 
 
 
00f4a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bea9526
00f4a0d
 
 
 
78928a5
 
 
 
 
 
 
 
 
 
 
 
00f4a0d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd1

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6746
- Answer: {'precision': 0.6505771248688352, 'recall': 0.7663782447466008, 'f1': 0.7037457434733257, 'number': 809}
- Header: {'precision': 0.20930232558139536, 'recall': 0.15126050420168066, 'f1': 0.17560975609756097, 'number': 119}
- Question: {'precision': 0.7188284518828452, 'recall': 0.8065727699530516, 'f1': 0.7601769911504423, 'number': 1065}
- Overall Precision: 0.6701
- Overall Recall: 0.7511
- Overall F1: 0.7083
- Overall Accuracy: 0.7973

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                        | Header                                                                                                      | Question                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.8511        | 1.0   | 10   | 1.6077          | {'precision': 0.01362088535754824, 'recall': 0.014833127317676144, 'f1': 0.014201183431952664, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.17871759890859482, 'recall': 0.12300469483568074, 'f1': 0.1457174638487208, 'number': 1065} | 0.0886            | 0.0718         | 0.0793     | 0.3669           |
| 1.4863        | 2.0   | 20   | 1.2821          | {'precision': 0.14936708860759493, 'recall': 0.14585908529048208, 'f1': 0.14759224515322075, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.4211309523809524, 'recall': 0.5314553990610329, 'f1': 0.46990452469904526, 'number': 1065}  | 0.3204            | 0.3432         | 0.3314     | 0.5815           |
| 1.1566        | 3.0   | 30   | 1.0398          | {'precision': 0.38341968911917096, 'recall': 0.3658838071693449, 'f1': 0.3744465528146742, 'number': 809}     | {'precision': 0.04, 'recall': 0.008403361344537815, 'f1': 0.01388888888888889, 'number': 119}               | {'precision': 0.5764705882352941, 'recall': 0.644131455399061, 'f1': 0.6084257206208424, 'number': 1065}    | 0.4947            | 0.4932         | 0.4940     | 0.6493           |
| 0.9277        | 4.0   | 40   | 0.8788          | {'precision': 0.5094339622641509, 'recall': 0.6007416563658838, 'f1': 0.5513329551900171, 'number': 809}      | {'precision': 0.19047619047619047, 'recall': 0.06722689075630252, 'f1': 0.09937888198757765, 'number': 119} | {'precision': 0.6472172351885098, 'recall': 0.6769953051643193, 'f1': 0.6617714547957778, 'number': 1065}   | 0.5758            | 0.6096         | 0.5922     | 0.7266           |
| 0.7448        | 5.0   | 50   | 0.7982          | {'precision': 0.5696594427244582, 'recall': 0.6823238566131026, 'f1': 0.6209223847019122, 'number': 809}      | {'precision': 0.2, 'recall': 0.11764705882352941, 'f1': 0.14814814814814817, 'number': 119}                 | {'precision': 0.6689478186484175, 'recall': 0.7342723004694836, 'f1': 0.7000895255147717, 'number': 1065}   | 0.6105            | 0.6764         | 0.6418     | 0.7475           |
| 0.6273        | 6.0   | 60   | 0.7378          | {'precision': 0.6345549738219896, 'recall': 0.7490729295426453, 'f1': 0.6870748299319728, 'number': 809}      | {'precision': 0.21052631578947367, 'recall': 0.13445378151260504, 'f1': 0.1641025641025641, 'number': 119}  | {'precision': 0.6871270247229326, 'recall': 0.7568075117370892, 'f1': 0.7202859696157283, 'number': 1065}   | 0.6479            | 0.7165         | 0.6805     | 0.7778           |
| 0.5778        | 7.0   | 70   | 0.6971          | {'precision': 0.6439075630252101, 'recall': 0.757725587144623, 'f1': 0.6961953435547985, 'number': 809}       | {'precision': 0.20238095238095238, 'recall': 0.14285714285714285, 'f1': 0.16748768472906403, 'number': 119} | {'precision': 0.6765412329863891, 'recall': 0.7934272300469484, 'f1': 0.7303370786516853, 'number': 1065}   | 0.6455            | 0.7401         | 0.6896     | 0.7825           |
| 0.5262        | 8.0   | 80   | 0.6989          | {'precision': 0.6372141372141372, 'recall': 0.757725587144623, 'f1': 0.6922642574816488, 'number': 809}       | {'precision': 0.20689655172413793, 'recall': 0.15126050420168066, 'f1': 0.17475728155339806, 'number': 119} | {'precision': 0.7364685004436557, 'recall': 0.7793427230046949, 'f1': 0.7572992700729927, 'number': 1065}   | 0.6714            | 0.7331         | 0.7009     | 0.7963           |
| 0.4867        | 9.0   | 90   | 0.6756          | {'precision': 0.6428571428571429, 'recall': 0.7564894932014833, 'f1': 0.6950596252129472, 'number': 809}      | {'precision': 0.1935483870967742, 'recall': 0.15126050420168066, 'f1': 0.169811320754717, 'number': 119}    | {'precision': 0.7079207920792079, 'recall': 0.8056338028169014, 'f1': 0.7536231884057971, 'number': 1065}   | 0.6593            | 0.7466         | 0.7002     | 0.7951           |
| 0.4757        | 10.0  | 100  | 0.6746          | {'precision': 0.6505771248688352, 'recall': 0.7663782447466008, 'f1': 0.7037457434733257, 'number': 809}      | {'precision': 0.20930232558139536, 'recall': 0.15126050420168066, 'f1': 0.17560975609756097, 'number': 119} | {'precision': 0.7188284518828452, 'recall': 0.8065727699530516, 'f1': 0.7601769911504423, 'number': 1065}   | 0.6701            | 0.7511         | 0.7083     | 0.7973           |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1