metadata
tags:
- merge
- mergekit
- lazymergekit
- BlackBeenie/Neos-Llama-3.1-8B
- Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder
- Solshine/reflection-llama-3.1-8B
base_model:
- BlackBeenie/Neos-Llama-3.1-8B
- Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder
- Solshine/reflection-llama-3.1-8B
model-index:
- name: Bloslain-8B-v0.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 50.23
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 30.66
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 14.5
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.49
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.45
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.48
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2
name: Open LLM Leaderboard
Bloslain-8B-v0.2
Bloslain-8B-v0.2 is a merge of the following models using LazyMergekit:
- BlackBeenie/Neos-Llama-3.1-8B
- Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder
- Solshine/reflection-llama-3.1-8B
🧩 Configuration
models:
- model: NousResearch/Meta-Llama-3.1-8B-Instruct
# No parameters necessary for base model
- model: BlackBeenie/Neos-Llama-3.1-8B
parameters:
density: 0.53
weight: 0.4
- model: Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder
parameters:
density: 0.53
weight: 0.3
- model: Solshine/reflection-llama-3.1-8B
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3.1-8B-Instruct
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "BlackBeenie/Bloslain-8B-v0.2"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 23.80 |
IFEval (0-Shot) | 50.23 |
BBH (3-Shot) | 30.66 |
MATH Lvl 5 (4-Shot) | 14.50 |
GPQA (0-shot) | 7.49 |
MuSR (0-shot) | 10.45 |
MMLU-PRO (5-shot) | 29.48 |