YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Model Information

The Meta Llama 3.3 multilingual large language model (LLM) is a pretrained and instruction tuned generative model in 70B (text in/text out). The Llama 3.3 instruction tuned text only model is optimized for multilingual dialogue use cases and outperforms many of the available open source and closed chat models on common industry benchmarks.

Model developer: Meta

Model Architecture: Llama 3.3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.

Training Data Params Input modalities Output modalities Context length GQA Token count Knowledge cutoff
Llama 3.3 (text only) A new mix of publicly available online data. 70B Multilingual Text Multilingual Text and code 128k Yes 15T+ December 2023

Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.

Llama 3.3 model. Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability.

Model Release Date:

  • 70B Instruct: December 6, 2024

Status: This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.

License A custom commercial license, the Llama 3.3 Community License Agreement, is available at: https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE

Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.3 in applications, please go here.

Intended Use

Intended Use Cases Llama 3.3 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.3 model also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.3 Community License allows for these use cases.

Out-of-scope Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.3 Community License. Use in languages beyond those explicitly referenced as supported in this model card**.

**Note: Llama 3.3 has been trained on a broader collection of languages than the 8 supported languages. Developers may fine-tune Llama 3.3 models for languages beyond the 8 supported languages provided they comply with the Llama 3.3 Community License and the Acceptable Use Policy and in such cases are responsible for ensuring that any uses of Llama 3.3 in additional languages is done in a safe and responsible manner.

Hardware and Software

Training Factors We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure.

Training Energy Use Training utilized a cumulative of 39.3M GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency.

Training Greenhouse Gas Emissions Estimated total location-based greenhouse gas emissions were 11,390 tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy, therefore the total market-based greenhouse gas emissions for training were 0 tons CO2eq.

Training Time (GPU hours) Training Power Consumption (W) Training Location-Based Greenhouse Gas Emissions (tons CO2eq) Training Market-Based Greenhouse Gas Emissions (tons CO2eq)
Llama 3.3 70B 7.0M 700 2,040 0

The methodology used to determine training energy use and greenhouse gas emissions can be found here. Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others.

Training Data

Overview: Llama 3.3 was pretrained on ~15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 25M synthetically generated examples.

Data Freshness: The pretraining data has a cutoff of December 2023.

Benchmarks - English Text

In this section, we report the results for Llama 3.3 relative to our previous models.

Instruction tuned models

Category Benchmark # Shots Metric Llama 3.1 8B Instruct Llama 3.1 70B Instruct Llama-3.3 70B Instruct Llama 3.1 405B Instruct
General MMLU (CoT) 0 macro_avg/acc 73.0 86.0 86.0 88.6
MMLU Pro (CoT) 5 macro_avg/acc 48.3 66.4 68.9 73.3
Steerability IFEval 80.4 87.5 92.1 88.6
Reasoning GPQA Diamond (CoT) 0 acc 31.8 48.0 50.5 49.0
Code HumanEval 0 pass@1 72.6 80.5 88.4 89.0
MBPP EvalPlus (base) 0 pass@1 72.8 86.0 87.6 88.6
Math MATH (CoT) 0 sympy_intersection_score 51.9 68.0 77.0 73.8
Tool Use BFCL v2 0 overall_ast_summary/macro_avg/valid 65.4 77.5 77.3 81.1
Multilingual MGSM 0 em 68.9 86.9 91.1 91.6

Responsibility & Safety

As part of our Responsible release approach, we followed a three-pronged strategy to managing trust and safety risks:

  • Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama.
  • Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm.
  • Provide protections for the community to help prevent the misuse of our models.

Responsible deployment

Llama is a foundational technology designed to be used in a variety of use cases, examples on how Meta’s Llama models have been responsibly deployed can be found in our Community Stories webpage. Our approach is to build the most helpful models enabling the world to benefit from the technology power, by aligning our model safety for the generic use cases addressing a standard set of harms. Developers are then in the driver seat to tailor safety for their use case, defining their own policy and deploying the models with the necessary safeguards in their Llama systems. Llama 3.3 was developed following the best practices outlined in our Responsible Use Guide, you can refer to the Responsible Use Guide to learn more.

Llama 3.3 instruct

Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the develoderationsper workload to deploy safe AI systems. For more details on the safety mitigations implemented please read the Llama 3 paper.

Fine-tuning data
We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control.

Refusals and Tone
Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines.

Llama 3.3 systems

Large language models, including Llama 3.3, are not designed to be deployed in isolation but instead should be deployed as part of an overall AI system with additional safety guardrails as required. Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools.
As part of our responsible release approach, we provide the community with safeguards that developers should deploy with Llama models or other LLMs, including Llama Guard 3, Prompt Guard and Code Shield. All our reference implementations demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box.

Capability-specific considerations

Tool-use: Just like in standard software development, developers are responsible for the integration of the LLM with the tools and services of their choice. They should define a clear policy for their use case and assess the integrity of the third party services they use to be aware of the safety and security limitations when using this capability. Refer to the Responsible Use Guide for best practices on the safe deployment of the third party safeguards.

Multilinguality: Llama 3.3 supports 7 languages in addition to English: French, German, Hindi, Italian, Portuguese, Spanish, and Thai. Llama may be able to output text in other languages than those that meet performance thresholds for safety and helpfulness. We strongly discourage developers from using this model to converse in non-supported languages without implementing finetuning and system controls in alignment with their policies and the best practices shared in the Responsible Use Guide.

Downloads last month
18
Safetensors
Model size
70.6B params
Tensor type
BF16
·
Inference API
Unable to determine this model's library. Check the docs .