Safetensors
llama
Merge
mergekit
lazymergekit
nbeerbower/llama-3-stella-8B
defog/llama-3-sqlcoder-8b
nbeerbower/llama-3-gutenberg-8B
openchat/openchat-3.6-8b-20240522
Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
cstr/llama3-8b-spaetzle-v20
mlabonne/ChimeraLlama-3-8B-v3
flammenai/Mahou-1.1-llama3-8B
KingNish/KingNish-Llama3-8b
Eval Results
llama-3-luminous-merged
llama-3-luminous-merged is a merge of the following models using LazyMergekit:
- nbeerbower/llama-3-stella-8B
- defog/llama-3-sqlcoder-8b
- nbeerbower/llama-3-gutenberg-8B
- openchat/openchat-3.6-8b-20240522
- Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
- cstr/llama3-8b-spaetzle-v20
- mlabonne/ChimeraLlama-3-8B-v3
- flammenai/Mahou-1.1-llama3-8B
- KingNish/KingNish-Llama3-8b
𧩠Configuration
models:
- model: NousResearch/Meta-Llama-3-8B
# No parameters necessary for base model
- model: nbeerbower/llama-3-stella-8B
parameters:
density: 0.6
weight: 0.16
- model: defog/llama-3-sqlcoder-8b
parameters:
density: 0.56
weight: 0.1
- model: nbeerbower/llama-3-gutenberg-8B
parameters:
density: 0.6
weight: 0.18
- model: openchat/openchat-3.6-8b-20240522
parameters:
density: 0.56
weight: 0.13
- model: Kukedlc/NeuralLLaMa-3-8b-DT-v0.1
parameters:
density: 0.58
weight: 0.18
- model: cstr/llama3-8b-spaetzle-v20
parameters:
density: 0.56
weight: 0.08
- model: mlabonne/ChimeraLlama-3-8B-v3
parameters:
density: 0.56
weight: 0.07
- model: flammenai/Mahou-1.1-llama3-8B
parameters:
density: 0.55
weight: 0.05
- model: KingNish/KingNish-Llama3-8b
parameters:
density: 0.55
weight: 0.05
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "BlackBeenie/llama-3-luminous-merged"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 21.48 |
IFEval (0-Shot) | 43.23 |
BBH (3-Shot) | 30.64 |
MATH Lvl 5 (4-Shot) | 7.85 |
GPQA (0-shot) | 5.70 |
MuSR (0-shot) | 10.63 |
MMLU-PRO (5-shot) | 30.81 |
- Downloads last month
- 8
Model tree for BlackBeenie/llama-3-luminous-merged
Merge model
this model
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard43.230
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard30.640
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard7.850
- acc_norm on GPQA (0-shot)Open LLM Leaderboard5.700
- acc_norm on MuSR (0-shot)Open LLM Leaderboard10.630
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard30.810