bart-large-cnn-with-generate-finetune-indosum

This model is a fine-tuned version of facebook/bart-large-cnn on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0686
  • Rouge1: 0.8873
  • Rouge2: 0.8491
  • Rougel: 0.8815
  • Rougelsum: 0.8815
  • Gen Len: 128.9129

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.2591 1.0 4460 0.2573 0.7218 0.6324 0.6969 0.6967 129.0612
0.1657 2.0 8920 0.1600 0.7613 0.6815 0.7401 0.7401 128.9508
0.0945 3.0 13380 0.1157 0.8001 0.7311 0.7837 0.7835 128.9105
0.0508 4.0 17840 0.0976 0.8277 0.7704 0.8152 0.8152 129.0289
0.0296 5.0 22300 0.0853 0.857 0.8087 0.8473 0.8471 128.9257
0.0176 6.0 26760 0.0793 0.8702 0.8279 0.8632 0.8633 128.9113
0.0112 7.0 31220 0.0605 0.8789 0.8377 0.872 0.8721 128.8637
0.0074 8.0 35680 0.0597 0.88 0.84 0.8731 0.8732 128.9305
0.005 9.0 40140 0.0658 0.8822 0.8433 0.8761 0.8761 128.949
0.0036 10.0 44600 0.0686 0.8873 0.8491 0.8815 0.8815 128.9129

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.0
  • Datasets 2.12.0
  • Tokenizers 0.13.2
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BlueWard/bart-large-cnn-with-generate-finetune-indosum

Finetuned
(311)
this model