FILM: Windows Installation Instructions
Anaconda Python 3.9 (Optional)
Install Anaconda3 Python3.9
- Go to https://www.anaconda.com/products/individual and click the "Download" button.
- Download the Windows 64-Bit or 32-bit Graphical Installer, depending on your system needs.
- Run the downloaded (
.exe
) file to begin the installation. - (Optional) Check the "Add Anaconda3 to my PATH environment variable". You may get a 'red text' warning of its implications, you may ignore it for this setup.
Create a new Anaconda virtual environment
- Open a new Terminal
- Type the following command:
conda create -n frame_interpolation pip python=3.9
- The above command will create a new virtual environment with the name
frame_interpolation
Activate the Anaconda virtual environment
- Activate the newly created virtual environment by typing in your terminal (Command Prompt or PowerShell)
conda activate frame_interpolation
- Once activated, your terminal should look like:
(frame_interpolation) <present working directory> >
NVIDIA GPU Support
Install CUDA Toolkit
- Go to https://developer.nvidia.com/cuda-11.2.1-download-archive and select your
Windows
. - Download and install
CUDA Tookit 11.2.1
. - Additional CUDA installation information available here.
Install cuDNN
- Go to https://developer.nvidia.com/rdp/cudnn-download.
- Create a user profile (if needed) and login.
- Select
cuDNN v8.1.0 (January 26th, 2021), for CUDA 11.0,11.1 and 11.2
. - Download cuDNN Library for Widnows (x86).
- Extract the contents of the zipped folder (it contains a folder named
cuda
) into<INSTALL_PATH>\NVIDIA GPU Computing Toolkit\CUDA\v11.2\
.<INSTALL_PATH>
points to the installation directory specified during CUDA Toolkit installation. By default,<INSTAL_PATH> = C:\Program Files
.
Environment Setup
- Add the following paths to your 'Advanced System Settings' > 'Environment Variables ...' > Edit 'Path', and add:
- \NVIDIA GPU Computing Toolkit\CUDA\v11.2\bin
- \NVIDIA GPU Computing Toolkit\CUDA\v11.2\libnvvp
- \NVIDIA GPU Computing Toolkit\CUDA\v11.2\include
- \NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\CUPTI\lib64
- \NVIDIA GPU Computing Toolkit\CUDA\v11.2\cuda\bin
Verify Installation
- Open a new terminal and type
conda activate frame_interpolation
. - Install (temporarily) tensorflow and run a simple operation, by typing:
pip install --ignore-installed --upgrade tensorflow==2.6.0
python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
- You should see success messages: 'Created device /job:localhost/replica:0/task:0/device:GPU:0'.
FILM Installation
- Get Frame Interpolation source codes
git clone https://github.com/google-research/frame-interpolation
cd frame-interpolation
- Install dependencies
pip install -r requirements.txt
conda install -c conda-forge ffmpeg
- Download pre-traned models, detailed here.
Running the Codes
- One mid-frame interpolation. Note:
python3
may not be recognized in Windows, so simply drop3
as below.
python -m eval.interpolator_test --frame1 photos\one.png --frame2 photos\two.png --model_path <pretrained_models>\film_net\Style\saved_model --output_frame photos\output_middle.png
- Large resolution mid-frame interpolation: Set
block_height
and--block_width
to subdivide along the height and width to create patches, where the interpolator will be run iteratively, and the resulting interpolated mid-patches will be reconstructed into a final mid-frame. In the example below, will create and run on 4 patches (2*2).
python -m eval.interpolator_test --frame1 photos\one.png --frame2 photos\two.png --block_height 2 --block_wdith 2 --model_path <pretrained_models>\film_net\Style\saved_model --output_frame photos\output_middle.png
- Many in-between frames interpolation
python -m eval.interpolator_cli --pattern "photos" --model_path <pretrained_models>\film_net\Style\saved_model --times_to_interpolate 6 --output_video
Acknowledgments
This windows installation guide is heavily based on tensorflow-object-detection-api-tutorial .