|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Beam pipeline that generates UCF101 `interp_test` triplet TFRecords. |
|
|
|
UCF101 interpolation evaluation dataset consists of 379 triplets, with the |
|
middle frame being the golden intermediate. The dataset is available here: |
|
https://people.cs.umass.edu/~hzjiang/projects/superslomo/UCF101_results.zip. |
|
|
|
Input to the script is the root folder that contains the unzipped |
|
`UCF101_results` folder. |
|
|
|
Output TFRecord is a tf.train.Example proto of each image triplet. |
|
The feature_map takes the form: |
|
feature_map { |
|
'frame_0/encoded': |
|
tf.io.FixedLenFeature((), tf.string, default_value=''), |
|
'frame_0/format': |
|
tf.io.FixedLenFeature((), tf.string, default_value='jpg'), |
|
'frame_0/height': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_0/width': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_1/encoded': |
|
tf.io.FixedLenFeature((), tf.string, default_value=''), |
|
'frame_1/format': |
|
tf.io.FixedLenFeature((), tf.string, default_value='jpg'), |
|
'frame_1/height': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_1/width': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_2/encoded': |
|
tf.io.FixedLenFeature((), tf.string, default_value=''), |
|
'frame_2/format': |
|
tf.io.FixedLenFeature((), tf.string, default_value='jpg'), |
|
'frame_2/height': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'frame_2/width': |
|
tf.io.FixedLenFeature((), tf.int64, default_value=0), |
|
'path': |
|
tf.io.FixedLenFeature((), tf.string, default_value=''), |
|
} |
|
|
|
Usage example: |
|
python3 -m frame_interpolation.datasets.create_ucf101_tfrecord \ |
|
--input_dir=<root folder of UCF101_results> \ |
|
--output_tfrecord_filepath=<output tfrecord filepath> |
|
""" |
|
|
|
import os |
|
|
|
from . import util |
|
from absl import app |
|
from absl import flags |
|
from absl import logging |
|
import apache_beam as beam |
|
import tensorflow as tf |
|
|
|
_INPUT_DIR = flags.DEFINE_string( |
|
'input_dir', |
|
default='/root/path/to/UCF101_results/ucf101_interp_ours', |
|
help='Path to the root directory of the `UCF101_results` of the UCF101 ' |
|
'interpolation evaluation data. ' |
|
'We expect the data to have been downloaded and unzipped. \n' |
|
'Folder structures:\n' |
|
'| raw_UCF101_results/\n' |
|
'| ucf101_interp_ours/\n' |
|
'| | 1/\n' |
|
'| | | frame_00.png\n' |
|
'| | | frame_01_gt.png\n' |
|
'| | | frame_01_ours.png\n' |
|
'| | | frame_02.png\n' |
|
'| | 2/\n' |
|
'| | | frame_00.png\n' |
|
'| | | frame_01_gt.png\n' |
|
'| | | frame_01_ours.png\n' |
|
'| | | frame_02.png\n' |
|
'| | ...\n' |
|
'| ucf101_sepconv/\n' |
|
'| ...\n') |
|
|
|
_OUTPUT_TFRECORD_FILEPATH = flags.DEFINE_string( |
|
'output_tfrecord_filepath', |
|
default=None, |
|
required=True, |
|
help='Filepath to the output TFRecord file.') |
|
|
|
_NUM_SHARDS = flags.DEFINE_integer('num_shards', |
|
default=2, |
|
help='Number of shards used for the output.') |
|
|
|
|
|
_INTERPOLATOR_IMAGES_MAP = { |
|
'frame_0': 'frame_00.png', |
|
'frame_1': 'frame_01_gt.png', |
|
'frame_2': 'frame_02.png', |
|
} |
|
|
|
|
|
def main(unused_argv): |
|
"""Creates and runs a Beam pipeline to write frame triplets as a TFRecord.""" |
|
|
|
triplets_list = tf.io.gfile.listdir(_INPUT_DIR.value) |
|
|
|
triplet_dicts = [] |
|
for triplet in triplets_list: |
|
triplet_dicts.append({ |
|
image_key: os.path.join(_INPUT_DIR.value, triplet, image_basename) |
|
for image_key, image_basename in _INTERPOLATOR_IMAGES_MAP.items() |
|
}) |
|
|
|
p = beam.Pipeline('DirectRunner') |
|
(p | 'ReadInputTripletDicts' >> beam.Create(triplet_dicts) |
|
| 'GenerateSingleExample' >> beam.ParDo( |
|
util.ExampleGenerator(_INTERPOLATOR_IMAGES_MAP)) |
|
| 'WriteToTFRecord' >> beam.io.tfrecordio.WriteToTFRecord( |
|
file_path_prefix=_OUTPUT_TFRECORD_FILEPATH.value, |
|
num_shards=_NUM_SHARDS.value, |
|
coder=beam.coders.BytesCoder())) |
|
result = p.run() |
|
result.wait_until_finish() |
|
|
|
logging.info('Succeeded in creating the output TFRecord file: \'%s@%s\'.', |
|
_OUTPUT_TFRECORD_FILEPATH.value, str(_NUM_SHARDS.value)) |
|
|
|
if __name__ == '__main__': |
|
app.run(main) |
|
|