Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

XLM-Align

Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment (ACL-2021, paper, github)

XLM-Align is a pretrained cross-lingual language model that supports 94 languages. See details in our paper.

Example

model = = AutoModel.from_pretrained("CZWin32768/xlm-align")

Evaluation Results

XTREME cross-lingual understanding tasks:

Model POS NER XQuAD MLQA TyDiQA XNLI PAWS-X Avg
XLM-R_base 75.6 61.8 71.9 / 56.4 65.1 / 47.2 55.4 / 38.3 75.0 84.9 66.4
XLM-Align 76.0 63.7 74.7 / 59.0 68.1 / 49.8 62.1 / 44.8 76.2 86.8 68.9

MD5

b9d214025837250ede2f69c9385f812c  config.json
6005db708eb4bab5b85fa3976b9db85b  pytorch_model.bin
bf25eb5120ad92ef5c7d8596b5dc4046  sentencepiece.bpe.model
eedbd60a7268b9fc45981b849664f747  tokenizer.json

About

Contact: chizewen@outlook.com

BibTeX:

@article{xlmalign,
  title={Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment},
  author={Zewen Chi and Li Dong and Bo Zheng and Shaohan Huang and Xian-Ling Mao and Heyan Huang and Furu Wei},
  journal={arXiv preprint arXiv:2106.06381},
  year={2021}
}
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.