OpenELM-1_1B-DPO-full-self-improve
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 13.7610
- Rewards/chosen: -51.0
- Rewards/rejected: -46.75
- Rewards/accuracies: 0.4570
- Rewards/margins: -4.3438
- Logps/rejected: -4960.0
- Logps/chosen: -5440.0
- Logits/rejected: 1.8125
- Logits/chosen: 0.8477
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.2459 | 0.1047 | 100 | 3.8620 | -12.0625 | -10.5 | 0.4531 | -1.5391 | -1344.0 | -1528.0 | -5.5625 | -5.9688 |
0.1787 | 0.2094 | 200 | 4.2236 | -13.0625 | -11.1875 | 0.4434 | -1.9141 | -1408.0 | -1624.0 | -1.0547 | -1.8828 |
0.1064 | 0.3141 | 300 | 5.5584 | -19.5 | -16.875 | 0.4336 | -2.5156 | -1984.0 | -2256.0 | 2.6406 | 1.8281 |
0.1114 | 0.4188 | 400 | 5.9626 | -21.625 | -19.5 | 0.4473 | -2.1094 | -2240.0 | -2480.0 | -2.3906 | -3.2969 |
0.0803 | 0.5236 | 500 | 6.1040 | -24.75 | -23.375 | 0.4922 | -1.4141 | -2624.0 | -2800.0 | 3.6562 | 2.4844 |
0.0999 | 0.6283 | 600 | 5.5224 | -22.5 | -20.375 | 0.4395 | -2.125 | -2336.0 | -2576.0 | 2.6719 | 1.2969 |
0.0767 | 0.7330 | 700 | 5.9968 | -24.25 | -22.5 | 0.4648 | -1.6953 | -2544.0 | -2736.0 | 0.5781 | -0.4414 |
0.0891 | 0.8377 | 800 | 4.9921 | -20.875 | -19.125 | 0.4570 | -1.7188 | -2208.0 | -2400.0 | -0.3652 | -1.375 |
0.0907 | 0.9424 | 900 | 3.9869 | -17.25 | -16.125 | 0.4785 | -1.1328 | -1896.0 | -2040.0 | -2.0781 | -3.0469 |
0.028 | 1.0471 | 1000 | 7.5994 | -27.75 | -26.0 | 0.4824 | -1.7422 | -2896.0 | -3104.0 | -1.6328 | -2.6094 |
0.0329 | 1.1518 | 1100 | 8.8766 | -34.5 | -33.0 | 0.4707 | -1.7344 | -3584.0 | -3776.0 | 0.8086 | -0.2539 |
0.0288 | 1.2565 | 1200 | 7.4045 | -30.25 | -27.875 | 0.4531 | -2.3438 | -3072.0 | -3344.0 | 0.7969 | -0.1514 |
0.0403 | 1.3613 | 1300 | 6.6099 | -27.75 | -25.75 | 0.4531 | -1.9844 | -2864.0 | -3088.0 | -2.9688 | -3.8125 |
0.0286 | 1.4660 | 1400 | 12.4327 | -43.75 | -39.75 | 0.4688 | -3.875 | -4288.0 | -4672.0 | 0.9492 | -0.0228 |
0.0237 | 1.5707 | 1500 | 9.6342 | -37.0 | -33.75 | 0.4414 | -3.25 | -3664.0 | -4016.0 | 1.4141 | 0.3789 |
0.0231 | 1.6754 | 1600 | 9.6624 | -38.25 | -34.75 | 0.4531 | -3.5156 | -3776.0 | -4160.0 | 1.1016 | 0.1680 |
0.0199 | 1.7801 | 1700 | 13.2106 | -48.5 | -43.75 | 0.4512 | -4.75 | -4672.0 | -5152.0 | 1.8438 | 0.9062 |
0.0202 | 1.8848 | 1800 | 10.3211 | -41.0 | -37.75 | 0.4492 | -3.2344 | -4080.0 | -4416.0 | 0.6641 | -0.2930 |
0.0305 | 1.9895 | 1900 | 9.0914 | -35.5 | -33.25 | 0.4609 | -2.0625 | -3616.0 | -3856.0 | -0.5703 | -1.5 |
0.0093 | 2.0942 | 2000 | 12.3840 | -45.75 | -42.0 | 0.4512 | -3.5938 | -4480.0 | -4864.0 | 0.7969 | -0.1797 |
0.006 | 2.1990 | 2100 | 13.6169 | -49.5 | -45.25 | 0.4531 | -4.2188 | -4832.0 | -5280.0 | 1.4062 | 0.4277 |
0.0119 | 2.3037 | 2200 | 12.2264 | -45.75 | -41.75 | 0.4531 | -3.9844 | -4480.0 | -4896.0 | 1.4453 | 0.4785 |
0.0105 | 2.4084 | 2300 | 12.7440 | -47.5 | -43.25 | 0.4531 | -4.125 | -4608.0 | -5056.0 | 1.4062 | 0.4570 |
0.0077 | 2.5131 | 2400 | 13.4844 | -50.25 | -45.75 | 0.4512 | -4.3125 | -4864.0 | -5344.0 | 1.7656 | 0.8125 |
0.0149 | 2.6178 | 2500 | 13.7760 | -51.0 | -46.75 | 0.4551 | -4.3438 | -4960.0 | -5408.0 | 1.6562 | 0.7031 |
0.0045 | 2.7225 | 2600 | 14.2584 | -52.75 | -48.25 | 0.4551 | -4.5 | -5120.0 | -5600.0 | 1.9766 | 1.0078 |
0.0105 | 2.8272 | 2700 | 13.8720 | -51.5 | -47.0 | 0.4551 | -4.375 | -4992.0 | -5472.0 | 1.8203 | 0.8516 |
0.0065 | 2.9319 | 2800 | 13.7610 | -51.0 | -46.75 | 0.4570 | -4.3438 | -4960.0 | -5440.0 | 1.8125 | 0.8477 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference API (serverless) does not yet support model repos that contain custom code.