whisper-base-en / README.md
CheeLi03's picture
Upload tokenizer
a2cfd23 verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - en
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base English - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: en_us
          split: None
          args: 'config: en split: test'
        metrics:
          - type: wer
            value: 13.915225878416063
            name: Wer

Whisper Base English - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5048
  • Wer: 13.9152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0182 5.3191 1000 0.4233 15.7209
0.0018 10.6383 2000 0.4743 13.7061
0.001 15.9574 3000 0.4963 13.6433
0.0008 21.2766 4000 0.5048 13.9152

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1